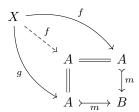
Topos Theory - Solutions to Exercise Sheet 1

Tom de Jong

11th April 2022

1. Suppose first that $m: A \rightarrow B$ is a monomorphism. We show that the given square is a pullback square, so let $f,g: X \rightarrow A$ be such that $m \circ f = m \circ g$. Because m is monic, we must have f = g, so that f (which equals g) is the unique dashed map making the diagram



commute. Hence, the given square is a pullback.

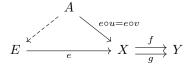
Conversely, suppose that the given square is a pullback and that we have $f,g\colon X\to A$ such that $m\circ f=m\circ g$. By the universal property of the pullback, there exists a (unique) $h\colon X\to A$ such that $f=\mathrm{id}_A\circ h=g$, so f=g, and m is seen to be a mono, as desired.

By duality, a map $e: A \to B$ is an epimorphism if and only if the square

$$\begin{array}{ccc}
A & \xrightarrow{e} & B \\
\downarrow e & & \parallel \\
B & \rightleftharpoons & B
\end{array}$$

is a pushout.

2. Let $E \xrightarrow{e} X \xrightarrow{g} Y$ be an equalizer diagram. We show that e is a monomorphism. So suppose that we have $u, v \colon A \to E$ with $e \circ u = e \circ v$. Then $f \circ e \circ u = g \circ e \circ v$, so by the universal property of the equalizer, there exists a unique dashed map making the diagram



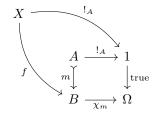
commute. Notice that both u and v make the diagram commute, so that u = v follows by uniqueness of the dashed map, proving that e is a mono.

3. Recall that χ_m is such that the square

$$\begin{array}{c}
A \xrightarrow{!_A} 1 \\
m \downarrow \\
B \xrightarrow{X_m} \Omega
\end{array}$$

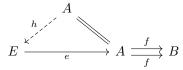
is a pullback. In particular, $\chi_m \circ m = \text{true}_A \equiv \text{true} \circ !_A = \text{true} \circ !_A \circ m$, where the final equality holds, because 1 is the terminal object. Hence, the diagram in the exercise indeed commutes. It remains to prove the universal property of the equalizer. To this end, suppose that we are given a morphism $f: X \to B$ such that $\text{true}_B \circ f = \chi_m \circ f$. We must find a unique dashed map making the diagram

commute. Notice that the diagram

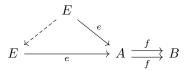


commutes. So by the universal property of the pullback, we get a unique $h\colon X\to A$ such that $m\circ h=f$ and $!_A\circ h=!_A$. The latter holds for any map into A, because 1 is the terminal object. Hence, there exists a unique $h\colon X\to A$ such that $m\circ h=f$, as desired.

4. By the universal property of the equalizer, there exists a unique $h:A\to E$ making the diagram



commute. It follows immediately from the diagram that $e \circ h = \mathrm{id}_A$, so it only remains to show that $h \circ e = \mathrm{id}_E$. To this end, note that by the universal property of the equalizer, there exists a unique dashed map making the diagram



commute. Obviously, we can take id_E for the dashed map, but $h \circ e$ also works, since $e \circ (h \circ e) = (e \circ h) \circ e = \mathrm{id}_A \circ e = e$. Hence, by uniqueness of the dashed map, we get the desired $h \circ e = \mathrm{id}_E$.

2

5. Spelling out the definitions, a terminal object in $M(\mathcal{E})$ is a monomorphism $t \colon S \to T$ of \mathcal{E} such that for every monomorphism $m \colon A \to B$ of \mathcal{E} , there exists a unique pair of morphisms $u \colon A \to S$ and $v \colon B \to T$ making the square

$$\begin{array}{ccc}
A & \xrightarrow{u} & S \\
\downarrow m & & \downarrow t \\
B & \xrightarrow{v} & T
\end{array}$$

into a pullback. As shown in the lectures, it follows that S must be the terminal object of \mathcal{E} . Thus, any two maps into S with the same domain must be equal. Hence, we can replace "a unique pair..." above by just "a unique $v \colon B \to T$...". But this says exactly that $t \colon S \rightarrowtail T$ is a subobject classifier.

- 6. (a) Suppose that $g, h: X \to A$ are such that $(\mathrm{id}_A, f) \circ g = (\mathrm{id}_A, f) \circ h$. We are to show that g = h, but this is straightforward, since $g = \pi_A \circ (\mathrm{id}_A, f) \circ g = \pi_A \circ (\mathrm{id}_A, f) \circ h = h$.
 - (b) Suppose that $f' : A \to B$ is such that $G_f = G_{f'}$ as subobjects of $A \times B$. This means that we have an isomorphism $\varphi : A \cong A$ satisfying $(\mathrm{id}_A, f) \circ \varphi = (\mathrm{id}_A, f')$. Then notice that $(\mathrm{id}_A, f) \circ \varphi = (\varphi, f \circ \varphi)$, from which it follows by post-composing with π_A that $\varphi = \mathrm{id}_A$. Hence, $f = \pi_B \circ (\mathrm{id}_A, f) = \pi_B \circ (\mathrm{id}_A, f) \circ \varphi = \pi_B \circ (\mathrm{id}_A, f') = f'$, as we wished to show.