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Abstract

This thesis presents a stable filtration of spaces which arise as homotopy limits. The filtra-

tion is inspired by Goodwillie’s Calculus of Functors and can be regarded as an interpolation

between the natural map

Σ∞ holim
C

F → holim
C

Σ∞F

for a given functor F : C→ S∗ where C is a small category and S∗ the category of pointed

spaces. Our results can be regarded as a generalization of the Goodwillie tower for mapping

spaces, as described in the work of G. Arone.

After constructing the tower, we provide a description of the layers and prove a conver-

gence result to the effect that if the functor F takes values in spaces more highly connected

that the dimension of the nerve of C, then the tower converges.
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Chapter 1

Introduction

This thesis is concerned with exhibiting a certain filtration of the stable homotopy type of

spaces which arise as homotopy limits. The filtration produced is inspired by Goodwillie’s

Calculus of Functors, and can be viewed as a generalization of the stable filtration of map-

ping spaces described in [1]. In this introduction, we provide some motivation and describe

the results obtained in later chapters.

Stable Homotopy Theory

A fundamental construction in homotopy theory is the suspension, ΣX, of a topological

space X, formed by “gluing two cones” to X as in the following digram.
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More formally, ΣX is the quotient of X × [0, 1] obtained by collapsing to a point each of

the subspaces X × {0} and X × {1}. Given a continuous map f : X → Y , one can easily

see that there is an induced map Σf : ΣX → ΣY by simply applying f levelwise, so that

we may regard Σ : S→ S as a functor on the category S of spaces.
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A major motivation for studying the suspension functor is that it tends to make spaces

more tractable. One example of this phenomenon, of which we will have quite a lot more to

say in Chapter 5, is the following: given spaces X and Y with a chosen basepoint in each,

we have a homotopy equivalence

Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y )

In other words, up to homotopy, the suspension of a cartesian product of two spaces “splits”

into a wedge sum of its constituent components. (Recall that the wedge ∨ of two pointed

spaces is the space obtained by gluing together their basepoints, and that the smash product

X ∧ Y can be defined as X ∧ Y = X × Y/X ∨ Y .)

If we proceed under the assumption that suspending a space X may help us break it

into simpler pieces, then we could try to simplify X even further by repeatedly suspending

it. Thus one is led naturally to consider the sequence of spaces

X, ΣX, Σ2X, . . .

where we inductively define ΣnX = Σ(Σn−1X). One thinks of the above sequence as

capturing all the essential information in the space X which remains after an arbitrarily

high number of suspensions.

It is convenient to organize such sequences into a category Sp, called the category of

spectra, by making the following definition: a spectrum is a sequence of pointed spaces

{Xi}∞i=0 together with structure maps

αi : ΣXi → Xi+1

To each pointed space X, the sequence {ΣiX}∞i=0 described above (where we have taken

αi = idΣi+1X) forms a spectrum called the suspension spectrum of X which is commonly

denoted Σ∞X.
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It turns out that this definition is more general than might appear at first glance in

the sense that there are many spectra which do not arise as the suspension spectrum of a

space X. For example, the Brown representability theorem asserts that every (generalized)

cohomology theory E∗(−) : S → GrAb (where GrAb is the category of graded abelian

groups) determines a spectrum E ∈ Sp. As an example, ordinary singular cohomology

H∗(−,Z) is represented by the Eilenberg-MacLane spectrum HZ defined by

HZ = {K(Z, i)}∞i=0

where K(Z, i) is the i-th Eilenberg-MacLance space associated to the abelian group Z.

Moreover, the definition is set up to ensure that the converse also holds: every spectrum

determines a cohomology (and homology) theory on the category of spaces. For this reason,

the category Sp of spectra has many properties in common with purely algebraic categories

such as the category of chain complexes over a ring R, and serves as a kind of intermediate

ground between topology and pure algebra. Stable homotopy theory is concerned with the

properties of the category Sp.

Associating to each space X its suspension spectrum determines a functor

Σ∞ : S→ Sp

so that we can view the ordinary category of spaces as reflected in the stable category. While

the above discussion has made the case that the study of Σ∞X is often more tractable than

the study of X itself, there are still major difficulties in practice. Taking the case X = S0,

the 0-sphere, we find that understanding the spectrum Σ∞S0 is equivalent to calculating

the stable homotopy groups of spheres, perhaps the most important unsolved problem of

stable homotopy theory today.

On the other hand, there are cases where are great deal more can be said. A classic

example is that of the James model J(X) for the loop space of a suspension. [13]. Milnor

[16] showed that after a single suspension, this space splits into a wedge of smash products
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of X. In particular, this implies that stably we have

Σ∞ΩΣX '
∞∨
i=0

Σ∞X∧i

where ΩΣX = Map(S1,ΣX) is the space of based loops in ΣX. Observe that this theo-

rem can be phrased as a statement about the suspension spectrum Σ∞Map(S1,ΣX) of a

mapping space. Moreover, the resulting spectrum has a natural filtration by the sub-spectra

n∨
i=1

Σ∞X∧i

for increasing n. We will be concerned with similar stable filtrations in what follows.

The Goodwillie Calculus

A common way to try and understand a complicated space X (or spectrum, as we shall

see) is to filter X by finding some natural family of spaces {Xi} which have either a map to

or from the space X in question. As an example, when X is a CW -complex (or simplicial

set), we have the skeletal filtration defined by letting Xi be the subspace of X determined

by all cells (respectively simplices) of dimension less than or equal to i. The subspaces Xi

determine a family of inclusions

Xi ↪→ X

and moreover

X ∼= colim(X0 ↪→ X1 ↪→ X2 ↪→ · · · )

Often one can recover important informaion about X (such as, say, the homology or coho-

mology of X) from information about the Xi and the successive quotients Xi/Xi−1. Observe

that each of these spaces appears as the cofiber of the inclusion Xi−1 ↪→ Xi, and that in

the case at hand, each is a bouquet of spheres.
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Dually, a space X has a Postnikov tower, or coskeletal filtration, formed by spaces PXi

defined by the property that πk(PXi) = 0 for k > i and πk(PXi) = πk(X) for k < i. Each

PXi comes equipped with a natural fibration PXi → X and we have

X ∼= lim(PX0 ← PX1 ← PX2 ← · · · )

We find from caclulating in the long exact sequence of homotopy groups induced by the

fibrations PXi → PXi−1 that the fiber of this map is an Eilenberg-MacLane space. We

can again try to recover information about X from knowledge of its Postnikov sections PXi

and the fibers just described.

Often the process of recovering information about the orginal space X takes the form

of a spectral sequence, which can be viewed as an algebraic machine taking as input the

information about the filtration, and producing as output the required information about

X. Subtle variations in the way one filters a given object X can lead to spectral sequences

with very different properties, some more manageable than others.

The Goodwillie Calculus, developed in the series of papers [9], [10], [11], can be thought

of as a structured way of generating such filtrations. The setup, however, is slightly more

general: instead of filtering a fixed space X, we consider some homotopy functor F and

obtain a filtration of all the spaces (or spectra) F (X) simultaneously. In the case of relevance

to this thesis, we deal with functors F : S∗ → Sp, where S∗ is the category of pointed spaces

and Sp is the category of spectra. The Goodwillie Calculus then produces for us a filtration

of the spectrum F (X) given by a tower of fibrations
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...

��

PnF (X)

��

Pn−1F (X)

��

...

��

F (X) //

??~~~~~~~~~~~~~~~

DD																				
P1F (X)

valid for each space X. One thinks of the functors PnF : S∗ → Sp so produced as “polyno-

mial approximations” to the given functor F , in analogy with the Taylor approximations

of a real-valued function f . We will refer to the above tower as either the Goodwillie or

Taylor tower for the functor F . It is shown in [11], that the fiber of the map

PnF (X)→ Pn−1F (X)

takes the form

(∂nF ∧X∧n)hΣn

where ∂nF is a spectrum with an action of the n-th symmetric group Σn called the n-th

Goodwillie derivative of F . For a given homotopy functor F , one is interested in under-

standing the spectra ∂nF for each n, the approximating functors PnF , and in understanding

what conditions on the space X will ensure that we have an equivalence

F (X) ' lim←−(P1F (X)← P2F (X)← · · · )

When the above equivalence holds, one says that the tower converges at X. Determining

the spaces X for which this happens is analogous to finding the “radius of convergence” of

the Taylor series of some real-valued function f .
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There are certain functors F for which answers to these questions are known. For

example, [1] gives a complete desciption of the Goodwillie Tower for the functor F =

Σ∞Map(K,X), with K some fixed finite dimensional complex. To describe the result, we

first introduce some notation. Let Eop denote the opposite of the category of non-empty

finite sets and surjective maps and E
op
n the subcategory of finite sets of cardinality at most

n. Then each pointed space X determines a functor Eop → S∗ with

p 7→ X∧p

and by restriction, a functor E
op
n → S∗ for each n. For fixedX andK, we let NatEop

n
(Σ∞K∧p,Σ∞X∧p)

denote the spectrum of natural transformations between the associated functors, which can

be described as the end

∫
Eop
n

MapSp(Σ
∞K∧p,Σ∞X∧p)

Write c(X) for the connectivity of a pointed space X. Then the following theorem is proved

in [1]

Theorem 1.0.1 (Arone). For each n, we have a weak equivalence

PnΣ∞Map(K,X) ∼−→ NatEop
n

(Σ∞K∧p,Σ∞X∧p)

Moreover, the Goodwillie tower converges for all spaces X which satisfy

c(X) > dimK

We will obtain this result as a corollary of the convergence properties of our stabilization

tower for homotopy limits in Chapter 6.

For more applications of the Goodwillie Calculus, the reader may wish to consult, for

example, [2], [14], [20], [19].
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A Stable Filtration for Homotopy Limits

Given a small category C and a functor F : C → S∗, one can construct a space called the

homotopy limit of F which repairs a certain deficiency of the ordinary limit: namely that

it is not homotopy invariant. We will give precise definitions in the next chapter, but the

heuristic discussion which follows will serve well enough for the introduction.

Recall that to each category C we can associate a space N(C) (really, a simplicial set,

though the distinction will not concern us here) called the nerve of C. Then our functor F :

C→ S∗ determines a space, the homotopy colimit of F , together with a natural projection

π : hocolimC F → N(C). One imagines constructing the homotopy colimit by taking the

disjoint union of all F (x) as x runs over the objects of C, and gluing these spaces together

using the topology of N(C). For example, when F is the terminal functor, i.e. constant at

a point, then hocolimC F = N(C). The projection π is defined so that it satisfies π−1(x) =

F (x) for all x ∈ C.

An intuitive definition of the homotopy limit, then, is as the space of sections of the

projection π. That is

holim
C

F = Γ


hocolimC F

π
��

N(C)

II

)
� �


where we have used Γ to denote the indicated space of sections.

One can check that if the functor F : C → S∗ is constant at some space X, that is,

F (x) = X for all x ∈ C, then hocolimC F ' N(C)×X. One then expects that

holim
C

F ' Map(N(C), X)

which is indeed the case. We see then from this discussion that one should regard the

homotopy limit of a functor F : C → S∗ as a kind of space of sections, or generalized

mapping space, of which the ordinary mapping space is a special case.

Allowing the functor F to vary, we may regard the homotopy limit as a functor
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holim : SC
∗ → S∗

One could say, then, that the goal of the current work is to exhibit the Goodwillie tower

for the composite functor

Σ∞ holim : SC
∗ → Sp

in such a way that it agrees with the calculation of [1] when restricted to constant functors.

One caveat before we continue: while this point of view provides motivation for the

current work, and even though we will in fact be able to recover the results described in

the previous section, we will stop short of referring to our filtration as the Goodwillie tower

for the homotopy limit functor. The reason is that such a claim would require a fully

developed theory of the Goodwillie Calculus on diagram categories. While such a theory

almost certainly exists, it is not yet fully treated in the literature, and we will not have

the means to explore it here. In particular, we do not prove any result about the excisive

properties of our tower, which would certainly be a requirement for any filtration claiming

to be the Goodwillie Tower. We choose instead to refer to our filtration as the stabilization

tower for homotopy limits with the hope that we can remove this restriction in future work.

Let us see, then, how one might obtain the desired filtration of Σ∞ holimC F for some

diagram F : C → S∗ of pointed spaces. As a first approximation, one might consider the

spectrum holimC Σ∞F obtained by first stabilizing the values of the functor F pointwise.

Indeed, one can easily check that there is a natural map

Σ∞ holim
C

F → holim
C

Σ∞F

But this map in rarely an equivalence. Compare this, however, with the case n = 1 in

Theorem 1.0.1. (This is often referred to as the linear approximation.) This map takes the

form
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Σ∞Map(K,X)→ Map(Σ∞K,Σ∞X)

So we might expect the natural map above to play the role of the linear approximation in

the stabilization tower for homotopy limits, and this is indeed the case.

To obtain the higher order approximations, that is, the higher levels in the filtration, we

consider the role played by the category E
op
n of non-empty finite sets of cardinality at most

n and surjections. In Section 4.1, we will create a category C(n) built as a kind of wreath

product of C and E
op
n by employing a certain categorical operation called the Grothendieck

construction, described in detail in Chapter 3. We construct a natural extension F (n) :

C(n) → S∗ of our original functor to this new category, and this construction determines a

tower

...

��

holim
C(n)

Σ∞F (n)

��

holim
C(n−1)

Σ∞F (n−1)

��

...

��

Σ∞ holim
C

F //

BB������������������������

<<xxxxxxxxxxxxxxxxxx
holim

C(1)
Σ∞F (1)

which yields the desired filtration.

Of primary interest in any tower type filtration are the layers of the tower. That is, the

homotopy fibers

holim
C(n)

Σ∞F (n) → holim
C(n−1)

Σ∞F (n−1)

for varying n. We present two descriptions, both of which follow from our groundwork on

fibered categories in Chapter 3. The main idea is to “cone off” the parts of each homotopy
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limit arising from lower levels in the tower. It turns out that in order to excise as much as

possible from each level, we need to employ a kind of subdivision process which we explore

in Section 3.3.

We carry out our plan as follows. In Chapter 2, we recall some of the basic constructions

necessary for the remainder of the discussion. We discuss homotopy limits, homotopy Kan

extensions, cosimplicial spaces and totalization. Then in Chapter 3 we introduce the notion

of fibered and opfibered categories, showing how they are related to the Grothendieck

construction alluded to above. We also explore how to manipulate homotopy limits indexed

by such categories, as this will be a fundamental tool both in exploring the tower itself and

investigating its convergence properties. In Chapter 4 we construct the tower as outlined

above, and provide our aforementioned descriptions of the layers. Chapter 5 contains a

description of the tower when the category C is discrete and finite, and we show that we

recover the classical stable splitting of a product in this case. Finally in Chapter 6 we

prove a result about the convergence of the tower under certain hypothesis on the indexing

category C and the values of the functor F . Our main result says that if N(C) is finite, and

if for each x ∈ C we have

c(F (x)) ≥ dim N(C/x)

the the stabilization tower for holimC F converges.



Chapter 2

Background

In this chapter we recall some of the basic ideas fundamental to this thesis.

2.1 Notation

Some various categories we will be using:

∆ = Finite Totally Ordered Sets

S = Simplicial Sets

S∗ = Pointed Simplicial Sets

Sp = Spectra

E = Finite Sets and Surjections

En = Finite Sets and Surjections of cardinality at most n

2.2 Homotopy Limits

The standard reference for this material is [4]. See also the paper [17] for a slightly more

modern treatment.

13
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The starting point for the introduction of homotopy limits is the following observation:

if F : C→ S∗ and G : C→ S∗ are two C-diagrams of pointed simplicial sets, and α : F → G

is a natural transformation which is an object-wise weak equivalence, then the natural map

lim←−F → lim←−G

need not be a weak equivalence. In a sense, this should not be much of a surprise. Homotopy

theory takes the view that two spaces should be considered equivalent when there is a map

between them inducing an isomorphism on all homotopy groups. But, of course, such a

map need not be an isomorphism of simplicial sets. As the ordinary limit is defined without

reference to these special maps, we should not expect it to respect this extra structure.

One can easily repair this difficulty using the language of model categories (see [12] or

[7]). Recall that a category M is said to have all C-indexed limits if the diagonal functor

D : M→MC which sends an object of M to the constant functor at that object has a right

adjoint. If M is a closed model category then the theory allows us to construct a derived

adjunction between Ho(M) and Ho(MC). The right adjoint of this adjunction is called the

homotopy limit functor. As the category of pointed simplicial sets carries the structure of

a closed model category, we can form, for any small category C and any functor F : C→ S∗

an object

holim
C

F ∈ S∗

called the homotopy limit of F .

Various explicit models for this construction can be given, all of which result in weakly

equivalent spaces. We will assume from here on that our functor takes values in fibrant

simplicial sets, as can always be arranged by composing F with a fibrant replacement

functor (for example, Kan’s Ex∞.) In this case, one explicit model is given as the end

holim
C

F =
∫

C
Map∗(N(C/x)+, F (x))
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where N denotes the nerve functor. A reference for ends, and in particular the universal

property they enjoy, is [15]. We will introduce a second model shortly when we consider

cosimplicial spaces.

The following extremely useful result was first proved in [4]. We quote the more general

result of [12, Theorem 19.6.7] which applies to any model category.

Proposition 2.2.1. Let G : D → C be a functor and F : C → M an objectwise fibrant

diagram in a model category M. Suppose that N(G/x) is contractible for every x ∈ C. Then

G induces a natural weak equivalence

holim
C

F
∼−→ holim

D
FG

We will encounter the situation of the preceding proposition many times in this the-

sis, after verifying its hypotheses, we will often just say that an equivalence “follows by

confinality.”

Example 2.2.1. Let F : C → S be a functor which is constant. Say F (x) = X for all

x ∈ C. Then we have

holim
C

F =
∫
x∈C

Map∗(N(C/x)+, F (x))

=
∫
x∈C

Map(N(C/x), X)

= Map(
∫ x∈C

N(C/x), X)

= Map(N(C), X)

as claimed in the introduction. Here we have used elementary properties of end calculus as

described in [15], together with the fact that the nerve of a category is the colimit of the

nerve of its slice categories.
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2.3 Homotopy Kan Extensions

Let C be a small category, and F : C→M a C-diagram in M. Given a functor G : C→ D,

we can ask whether there is any natural extension of F to a functor D → M. That is, we

wish to find a functor filling in the dotted arrow in the diagram

C
G //

F
��

@@@@@@@@ D

~~}
}

}
}

M

If M has small limits, we can construct such an extension, called the right Kan extension

of F along G, and denoted RanG F by setting

(RanG F )(d) = lim
c∈G/d

F (c)

One checks that this indeed gives a well defined functor, and moreover that we have an

adjunction G∗ ` RanG where G∗ denotes the restriction functor G∗ : MD → MC given by

precomposition with G.. (Again, see [15].) Observe that when D = {∗} is the terminal

category, the functor obtained by right Kan extension along the unique functor C → {∗}

just picks out the limit of F in M.

When the base category M is a cofibrantly generated closed model category, there is an

exactly analogous situation. Again denoting the restriction functor MD → MC by G∗, we

define a functor G∗ : MC →MD by setting

G∗(F )(d) = holim
c∈G/d

F (c)

The resulting functor is not strictly a right adjoint for G∗, but becomes one after passing

to the homotopy category [5, Theorem 6.11]. That is to say, there is an induced adjunction

Ho(MC)
G∗ // Ho(MD)
G∗
oo
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We deduce, in particular

Proposition 2.3.1. Let M be a cofibrantly generated model category. Suppose we have

functors

C
G−→ D

H−→ K

Then for any functor F : C→M, we have a natural weak equivalence

(H∗ ◦G∗)(F ) ' (H ◦G)∗(F )

Proof. This follows from the fact that adjoint functors compose, and that if two objects are

naturally isomorphic in Ho(MK) then they are naturally weakly equivalent in MK.

Corollary 2.3.2. Let M be a cofibrantly generated model category G : C → D a functor

between small categories, and F : C→M a C diagram in M. Then there is a natural weak

equivalence

holim
C

F ' holim
D

G∗(F )

Proof. Take K = {∗} in Proposition 2.3.1.

We remark that the theory of Kan extensions between diagram categories for a fixed

cofibrantly generated closed model category M can be given an elegant formulation using

the theory of derivators. In particular, the reader can find complete proofs of the above

assertions in the papers [6] and [5].

2.4 Cosimplicial Spaces

Let ∆ denote the category of finite ordinals and order preserving maps. A functorX : ∆→ S

is called a cosimplicial space. We write Xp = X([p]) for the functors value at the object

[p] ∈ ∆. Given a cosimplicial space X, we associate to X a space TotX called its totalization

as follows. Observe that we have a canonical cosimplicial space ∆ : ∆ → S defined by
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sending [p] 7→ ∆p, the standard p-simplex. (In fact, the functor ∆ is just the Yoneda

embedding.) Then we can define

TotX =
∫

∆
Map(∆p, Xp)

That is, TotX is just the space of natural transformations from the standard cosimplicial

space to X. This construction is exactly dual to the notion of the realization of a simplicial

space.

The category ∆ has an increasning sequence of subcategories ∆≤n obtained by consid-

ering only the finite ordinals up to cardinality n+ 1. One can easily check that

∆ ∼= colim
(
∆≤0 → ∆≤1 → ∆≤2 → · · ·

)
For each n, we can construct a kind of truncated totalization, denoted TotnX by setting

TotnX =
∫

∆
Map(skn ∆p, X([p]))

where skn : S → S denotes the n-th skeleton functor. One easily deduces that TotX is

isomorphic to the inverse limit of the tower

...

��

TotnX

��

Totn−1X

��

...

��

TotX //

<<zzzzzzzzzzzzzzzzz

BB���������������������
Tot0X

We refer to this as the Tot tower for X.

In the case when the cosimplicial space X is Reedy fibrant, that is, a fibrant object in

the Reedy model structure on cosimplicial spaces, (see [12], or [4]), the the totalization of
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X has another description. In this case [12, Theorem 18.7.4] shows that we have

TotX ' holim
∆

X

and similarly

TotnX ' holim
∆≤n

X

Cosimplicial spaces are an indispensible tool in the study of mapping spaces, which are,

as we have pointed out special cases of homotopy limits. The reason is that given any

functor F : C → S∗, we can form a cosimplicial space, called the cosimplicial replacement

of F as follows.

Write Cp for the set of p-simplices of the category C. That is, Cp = HomCat([p],C),

considered as a set. An arbitrary element of Cp is just a chain of p composable morphisms

in C. We will write −→x = x0 → · · · → xp for an arbitrary element of Cp. Now define

Xp
F =

∏
x0→···→xp
∈Cp

F (xp)

Then XF : ∆→ S∗ is a cosimplicial space, where the value of the functor XF on morphisms

of ∆ is given by pre-composition of chains. Moreover, the following is proved in [4, Lemma

5.2].

Proposition 2.4.1. If F is an objectwise fibrant C-diagram of pointed simplical sets, then

we have a natural weak equivalence

holim
C

F ' TotXF

where holimC F is defined as in Section 2.2.

In this thesis, we will be exclusively concerned with cosimplicial spaces arising as the

cosimplicial replacement of a functor F : C→ S∗, and all such diagrams are Reedy fibrant.
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Thus, in light of the above discussion, we have equivalences

holim
C

F ' TotXF ' holim
∆

XF

and we will freely use whichever model is most convenient in a given situation.

2.5 Cubical Diagrams

We write n = {1, 2, . . . n} for the finite set with n elements and Pn for the partially ordered

set of subsets of n regarded as a small category. More generally, for any finite set S, we

write PS for the category of subsets of S.

Definition 2.5.1. A cubical diagram is a functor

X : Pn → S∗

for some n. We occasionally refer to such a functor as an n-cube or n-cubical diagram.

Let S ⊆ T ⊆ n. The full subcategory of Pn determined by the objects {U ⊆ n | S ⊆ U ⊆

T} is isomorphic to PT\S , and hence the restriction of a given cubical diagram X : Pn → S∗

to this subcategory is again a cubical diagram, which we denote by ∂TSX. If either S = ∅ or

T = n, we will omit it from the notation. The case S = {x}, T = n \ {y} where x, y ∈ n

occurs often enough to merit the notation ∂yxX.

For a given x ∈ n we have a canonical map of (n− 1)-cubes

∂xX→ ∂xX

for any x ∈ n. Given our notational conventions, the domain of this natural transformation

is simply the restriction of X to all subsets U for which x /∈ U , while the codomain is the

restriction of X to all V such that x ∈ V . The components of the natural transformation are

given by evaluating X on the inclusions U ↪→ U ∪ {x} for all U such that x /∈ U . By taking
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the homotopy fiber of each of the components of this natural transformaion, we obtain an

(n−1) cube hofibx X. Continuing inductively, we finally arrive at a 0-cube, that is, a space,

which we denote by tfib X and refer to as the total fiber of X.

An alternate description of the total fiber, and one which makes it clear that its homo-

topy type does not depend on the order in which the elements are chosen above, is given as

follows. Let P+
n denote the category of non-empty subsets of n. We have a canonical map

a(X) : X(∅)→ holim
P+
n

X

One finds the following characterization of the total fiber proved in [10].

Proposition 2.5.1. We have a natural equivalence

tfib X ' hofib a(X)

Note that the above discussion has a dual form. That is, one may succesively take the

homotopy cofiber of the maps ∂xX → ∂xX and arrive at a space called the total cofiber of

X. We have, in this case, a canonical map

b(X) : hocolim
P−n

X→ X(n)

where P−n is the subcategory determined by omitting the terminal object n. The analog of

Proposition 2.5.1 is given by

Proposition 2.5.2. We have a natural equivalence

tcofib X ' hocofib b(X)

A cubical diagram X is called cartesian if the map a(X) is an equivalence and k-cartesian

if it is k-connected. Dually, X is cocartesian if b(X) is an equivalence and k-cocartesian if

it is k-connected. Goodwillie’s generalized Blakers-Massey theorem provides a relation-
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ship between these two notions. We will make use of the following form in our proof of

convergence below.

Theorem 2.5.3. Let X be an S-cube with |S| = n ≥ 1. Suppose that

1. for each T 6= ∅, the T -cube ∂S−TX is κ(T )-cartesian and

2. κ(U) ≤ κ(T ) whenever U ⊂ T .

Then X is d-cocartesian where d is the minimum of n − 1 +
∑

α κ(Tα) over all partitions

{Tα} of S by non-empty sets.

Our interest in cubical diagrams arises from the following connection with the Tot tower

of a cosimplicial space. Fix some [p] ∈ ∆ with p > 0. Then one easily checks that the

category ∆M/[p] where ∆M denotes the subcategory of injective order preserving maps is

isomorphic to P+
p+1, the isomorphism given by sending an injective map µ : [q]→ [p] to the

subset imµ ⊆ [p].

Observe that the category ∆M/[p] comes equipped with a canonical projection πp :

∆M/[p]→ ∆, and hence, given a cosimplicial space X, the composition

∆M/[p]
πp−→ ∆ X−→ S∗

can be considered as a functor on P+
p+1, that is, as a cubical diagram missing its initial

object. A proof of the following fact can be found in [18].

Proposition 2.5.4. We have an equivalence

holim
∆M/[p]

X ◦ πp ' Totn X̃

where X̃ denotes a fibrant replacement for X in the model structure on cosimplicial spaces.



Chapter 3

Fibered and Opfibered Categories

In this chapter we introduce the notions of a fibered and opfibered categories. Roughly,

these are categories arising from what is know as the Grothendieck construction, which can

be regarded as an analog of the homotopy colimit in Cat, the category of small categories.

We investigate the properties of homotopy limits indexed by diagrams arising from this

construction and provide some examples.

3.1 Opfibered Categories and the Grothendieck Construc-

tion

Definition 3.1.1. Let π : E→ B be a functor between small categories. If f : a→ b is an

arrow of B, and x ∈ π−1(a) is an object of E, we say that an arrow u : x→ y is a opcartesian

arrow for f and x if π(u) = f and for any arrow v : x → z and any arrow h : b → π(z)

for which h ◦ f = π(v), there is a unique arrow w : y → z in E such that w ◦ u = v and

π(w) = h.

This definition is perhaps best understood visually.

23
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E
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b
h
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Definition 3.1.2. A functor π : E→ B between small categories is called an opfibration if

there exists an opcartesian arrow for every pair (f, x) where f : a→ b is an arrow of B and

x ∈ π−1(a) ⊆ E.

The following fundamental construction is a major source of opfibered categories.

Definition 3.1.3. Let C be a small category and F : C → Cat a C-diagram of small

categories. The Grothendieck construction on F , denoted
∫
F is the category defined as

follows: the objects of
∫
F are pairs (a, x) where a is an object of C and x is an object of

F (a). A morphism (a, x) → (b, y) is a pair (f, h) where f : a → b is a morphism of C and

h : F (f)(x) → y is a morphism of F (b). Given two morphism (f, h) : (a, x) → (b, y) and

(g, k) : (b, y)→ (c, z). composition in the category
∫
F is defined by

(f, h) ◦ (g, k) = (g ◦ f, k ◦ F (g)(h))

That this composition is well defined is guaranteed by the functoriality of F .

Observe that there is a natural projection π :
∫
F → C defined by π(a, x) = a. In fact,

we have

Proposition 3.1.1. Let F : C→ Cat be a C-diagram of small categories. Then the natural

projection

π :
∫
F → C
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is a opfibration.

Proof. Let f : a→ b be a morphism of C and let (a, x) ∈ π−1(a) (so that x ∈ F (a)). Then

the pair (F (f)(x), idF (f)(x)) is an opcartesian arrow for f .

Example 3.1.1. Let L : C→ D be a functor and fix some d ∈ D. Consider the functor

HomD(d, L(−)) : C→ Set

and regard Set as the full subcategory of Cat consisting of the discrete categories.

By definition, an object of the category
∫

HomD(d, L(−)) is a pair (c, x) where c is an

object of C and x ∈ HomD(d, L(−)). That is, x : d → L(c) is morphism in D. We denote

this category by d/L and refer to it as a coslice category. When L = id, one calls this the

category of objects under d.

Example 3.1.2. Consider the diagram CD : C → Cat which is constant at D. That is,

CD(c) = D for every object c ∈ C and CD(f) = idD for every morphism f ∈ C. In this case,

an object of
∫
CD is a pair (c, d) where c ∈ D and d ∈ D = CD(c). A morphism is a pair

(f, g) : (c, d) → (c′, d′) where f : c → c′ is a morphism of C and g : F (f)(d) = d → d′ is a

morphism of D. It follows that
∫
CD
∼= C ×D and we learn that for any two categories C

and D, the projection map

C×D→ C

is an opfibration.

3.2 Fibered Categories

Dual to the notion of an opfibered category is that of a fibered category. We record the

definition here for completeness.
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Definition 3.2.1. Let π : E→ B be a functor between small categories. If f : a→ b is an

arrow of B, and y ∈ π−1(b) is an object of E, we say that an arrow u : x→ y is a cartesian

arrow for f and y if π(u) = f and for any arrow v : z → y and any arrow h : π(z) → a

for which f ◦ h = π(v), there is a unique arrow w : z → x in E such that w ◦ u = v and

π(w) = h.

Remark 3.2.1. This definition is perhaps most easily understood by viewing it as a kind

of “relative pullback” property as pictured in the following diagrams

E

π

��
�
�
�
�
�
�

B

z v

((

��
�
�
�
�
�

x u //

��
�
�
�
�
� y

��
�
�
�
�
�

π(z) π(v)

''
h $$IIIIIII

a
f

// b

z

∃!w %%LLLLLLLL v

((

��
�
�
�
�
�

x u //

��
�
�
�
�
� y

��
�
�
�
�
�

π(z) π(v)

''
h $$IIIIIII

a
f

// b

The dotted arrows in these diagrams indicate application of the functor π.

Definition 3.2.2. A functor π : E → B between small categories is called a fibration if

there exists a cartesian arrow for every pair (f, y) where f : a → b is an arrow of B and

y ∈ π−1(b) ⊆ E.

We record for later use the following lemma, which is just a consequence of the duality

of the definitions involved.

Lemma 3.2.1. Let π : E→ B be an opfibration. Then πop : Eop → Bop is a fibration.

As a consequence, given a functor F : Cop → Cat, we can create a category fibered over

C, denoted ∇F , by setting

∇F =
(∫

F op

)op

where F op denotes the functor defined by F op(c) = F (c)op for all c ∈ C.
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Our goal is to show that homotopy limits over a fibered category E decompose in a

simple fashion. A first step in this direction is the following:

Proposition 3.2.2. Let π : E→ B be a fibration. Then the inclusion functor

i : π−1(a)→ a/π

admits a right adjoint for every object a ∈ B.

Proof. We must first define a functor j : a/π → π−1(a). An object of a/π is a pair (y, f)

where y ∈ E and f : a→ π(y) is a morphism of B. Then since π is a fibration, there exists

a cartesian arrow u : x → y for which π(u) = f . In particular x ∈ π−1(a) and we may set

j(y, f) = x.

We are now to check that we have a natural isomorphism

Homπ−1(z, j(y, f)) ∼= Homa/π(i(z), (y, f))

Now, by composition with the map u, a map w : z → x in π−1(a) determines a map

(z, idz) → (y, f) in a/π. Moreover, the fact that u is cartesian says that every such map

arises this way.

We recall the following standard fact about adjoint functors.

Lemma 3.2.3. Let λ : C→ D be a functor which admits a right adjoint ρ : D→ C. Then

for every object d ∈ D, the category λ/d has an terminal object.

Proof. Observe that the counit λ(ρ(d)) → d makes ρ(d) into an object of λ/d. Moreover,

the adjunction triangle

λ(ρ(d)) // d

λ(c)

OO
<<yyyyyyyyy

shows that ρ(d) is a terminal object.
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Remark 3.2.2. An adjunction between small categories induces a simplicial homotopy

equivalence between their nerves. Thus the previous proposition can be viewed as saying

that the strict fiber and the homotopy fiber of a fibration are equivalent. This is one

justification for the use of the term fibration.

We now acheive the desired decomposition.

Proposition 3.2.4. Let π : E → B be a fibration and let F : E → S∗ be an E-diagram of

pointed simplicial sets. Then the homotopy right Kan extension of F along π, π∗(F ), is

naturally weakly equivalent to the functor defined by

b 7→ holim
π−1(b)

Fb

where Fb denotes the restriction of F to the fiber lying over b ∈ B.

Proof. From the definition, we have

π∗(F )(b) = holim
π/b

F

but Lemma 3.2.3 and Proposition 3.2.2 show that the inclusion π−1(b)→ π/b is cofinal, so

the result follows from Proposition 2.2.1.

Corollary 3.2.5. We have

holim
E

F ' holim
B

holim
π−1(b)

Fb

Proof. This now follows from Corollary 2.3.2.

The corollary tells us that when computing homotopy limits over fibered categories, we

may first calculate the homotopy limit of each strict fiber, and then compute the homotopy

limit of the resulting spaces. We now apply this result to prove some simple lemmas which

will be useful later.

Write N for the partially ordered set of natural numbers regarded as a category. In other

words, the category pictured as
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0→ 1→ 2→ 3→ · · ·

Suppose a given category C is filtered by a family of subcategories Ci in the sense that C is

the colimit of the diagram

C0 ↪→ C1 ↪→ C2 ↪→ · · ·

in Cat. Regard the above diagram as a functor K : N→ Cat and set

C∞ = ∇K

One can think of C∞ as a kind of reverse mapping telescope. It is fibered over Nop via the

natural projection π : C∞ → Nop, and the fiber over an element i ∈ Nop is the subcategory

Ci. Explicitly, an object of C∞ is a pair (i, x) where i ∈ Nop and x ∈ Ci. We remark that

for i < j there is a canonical map (j, x)→ (i, x).

We picture this category as follows:

C∞

π

��
�
�
�

Nop

C0

��
�
�
� C1
oo

��
�
�
� C2
oo

��
�
�
�

· · ·oo

0 1oo 2oo · · ·oo

Observe that in this case, we also have a natural functor γ : C∞ → C defined by γ(i, x) =

x ∈ C.

Lemma 3.2.6. The functor γ : C∞ → C is cofinal.

Proof. Let x ∈ C. We must show that N(γ/x) is contractible. Let n be the least natural

number for which x ∈ Cn. Define an endofunctor ρn : γ/x→ γ/x as follows.

ρn(i, y) =


(n, y) i < n

(i, y) i ≥ n
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Observe that there is a natural transformation ρn → idγ/x whose component at (i, y) is

the identity for i ≥ n and the canonical map (n, y) → (i, y) for i < n. It follows that the

nerve of γ/x is simplicially homotopy equivalent to the image of ρn. But (n, x) is a terminal

object of this subcategory.

Corollary 3.2.7. If F : C→ S∗ is a C diagram of pointed simplicial sets, then holimC F is

naturally weakly equivalent to the homotopy inverse limit of its restrictions to the Ci. That

is,

holim
C

F ' holim
Nop

(
holim

C0

F0 ← holim
C1

F1 ← holim
C2

F2 ← · · ·
)

Proof. Apply Corollary 3.2.5.

Example 3.2.1. Take C = ∆ and filter ∆ by the subcategories ∆≤n of finite totally ordered

sets with at most n + 1 elements. We have seen that for a cosimplicial space X : ∆ → S∗

we have an equivalence

Totn ' holim
∆≤n

X

So Corollary 3.2.7 gives a simple proof of the fact that the totalization of a cosimplicial

space is the homotopy inverse limit of its Tot tower.

3.3 The Twisted Arrow Category

For any category C, we have the functor

HomC(−,−) : Cop × C→ Set

Regarding Set as a full subcategory of Cat, we may consider the category T (C) =
∫

HomC.

We refer to this category as the twisted arrow category of C. Explicitly, the objects are the

morphisms f : a→ b of C and a morphism f → f ′ in T (C) is a commutative square
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a
f
// b

��

a′
f ′
//

OO

b′

in C. The category T (C) can be viewed as a kind of subdivision of the original category. In

fact, the nerve of T (C) agrees with the ordinal subdivision of [8].

The composition

π : T (C)→ Cop × C→ C

sends an arrow f : a→ b to its codomain b ∈ C. One easily checks that for b ∈ C, we have

π−1(b) ∼= (C/x)op. As this category has an initial object, we have in particular

Lemma 3.3.1. For any small category C and any C-diagram F : C → M in a simplicial

model category, the restriction map

holim
C

F → holim
T (C)

F ◦ π

is an equivalence.

Proof. This follows from Proposition 2.2.1.

The construction of the twisted arrow category is functorial in the category C and

hence determines an endofunctor T : Cat → Cat. We now show that this functor carries

opfibrations to fibrations.

Proposition 3.3.2. Suppose π : E→ B is an opfibration. Then the induced functor

T (π) : T (E)→ T (B)

is a fibration.

Proof. Consider an arrow (h, k) : f → f ′ in T (B), depicted as in the diagram
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a

f

��

a′
hoo

f ′

��

b
k
// b′

in B. If u′ : x′ → y′ is an an arrow of E for which π(u′) = f ′, then we may regard this as

an object of T (E) which lies over f ′. Hence we must show that there is a cartesian arrow

for u′ lying over the morphism (h, k).

As π(x′) = a′, and since the functor π is an opfibration, we can find an opcartesian

arrow for the pair (x′, h), that is, an arrow r : x′ → x for some x with π(x) = a. But now x

lies over a, and we can select an opcartesian arrow over f , say u : x→ y. Finally, we select

some s : y → z with π(z) = b′.

The arrows r, u, s are all opcartesian, hence so is the composite

x′
r−→ x

u−→ y
s−→ z

Then by definition, we obtain a unique arrow t : z → y′ such that t ◦ s ◦ u ◦ r = u′.. One

easily checks that the morphism (r, t ◦ s) depicted as

x

u

��

x′
roo

u′

��

y
t◦s
// y′

is the cartesian lift required.



Chapter 4

Construction of the Stabilization

Tower for Homotopy Limits

4.1 The Category C(∞)

Let us write F for the category of finite sets. Let A be a category with finite products.

Fixing some A ∈ A, we observe that there is a functor

PA : Fop → A

defined by setting

PA(S) =
∏
s∈S

A

for a finite set S. Given a morphism f : S → T in F, the morphism PA(T ) → PA(S) is

defined as follows. An element s ∈ S determines a projection

πf(s) : PA(T ) =
∏
t∈T

A→ A

and the collection of these projections as s runs over the elements of S determines a unique

33
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map

PA(f) :
∏
t∈T

A

Q
πf(s)−−−−→

∏
s∈S

A

One says that any category A with finite products is cotensored over finite sets.

Observing that the category Cat of small categories has products, we now specialize to

the case A = Cat and write E the category of non-empty finite sets of the form n = {1, . . . , n}

and surjections. We thus obtain, by composition with the natural inclusion, a functor

EC : Eop → Fop PC−−→ Cat

for every category C ∈ Cat. Explicitly, we have EC(n) = Cn for a finite set n.

Definition 4.1.1. We set

C(∞) =
∫
EC

Unraveling the definitions, we find that an object of C(∞) is a pair (n, x) where x ∈ Cn. It

will be convenient to use the notation xn = (x1, . . . , xn) for such an object, as it is completely

determined by its n components. A morphism f : (y1, . . . , yk) → (x1, . . . , xn) consists of a

surjection σ : n → k together with an n-indexed family of morphisms {fi : yσ(i) → xi}ni=1

with each fi ∈ C.

Remark 4.1.1. Fix some xn = (x1, . . . , xn) ∈ C(∞). Then from the above description of

the morphisms of C(∞), we see that there is a natural projection

C(∞)/(x1, . . . , xn)→ C/x1 × · · · × C/xn

which sends the morphism defined by the family {fi}ni=1 and the surjection σ to the object

of the codomain category which is given by the tuple (f1, . . . , fn).
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4.2 Constructing the Tower

Let F : C → S∗ be a C-diagram of pointed, fibrant simplicial sets. We construct a functor

F (∞) : C(∞) → S∗ as follows. For (x1, . . . , xn) ∈ C(∞), we set

F (∞)(x1, . . . , xn) = F (x1) ∧ · · · ∧ F (xn)

Suppose we have a map (σ, {fi}ni=1) : (x1, . . . , xm)→ (y1, . . . , yn) in the notation above.

Our object is to define a map

F (x1) ∧ · · · ∧ F (xm)→ F (y1) ∧ · · · ∧ F (yn)

Note that for 1 ≤ i ≤ n we have the map F (fi) : F (xσ(i))→ F (yi). Then we can define

(a1, . . . , am) 7→ (F (f1)(aσ(1)), . . . , F (fn)(aσ(n)))

for (a1, . . . , am) ∈ F (x1) × · · · × F (xm). The fact that these maps descend to the smash

product follows from the fact that we can view the smash product as the Cartesian product

modulo the thick wedge, meaning that an element (a1, . . . , am) is equivalent to the basepoint

if and only if at least one of the ai is a basepoint. But then the fact that the fi are based

maps guarantees that the image of this element is also a basepoint, and hence the above

map induces a well defined map on the smash product.

We now show

Lemma 4.2.1. There is a natural map

holim
C

F → holim
C(∞)

F (∞)

Proof. The assumption that F is objectwise fibrant allows us to explicitly construct each

homotopy limit as an end. We have the formulas
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holim
C

F =
∫

C
Map∗(N(C/x), F (x))

holim
C(∞)

F (∞) =
∫

C(∞)

Map∗(N(C(∞)/xn), F (xn))

Recall that to construct a map into an end, it is sufficient to construct maps to each

component which satisfy an approriate commutative diagram. In the case at hand, we

must construct maps

ωxn : holim
C

F → Map∗(N(C(∞)/xn), F (∞)(xn))

for each object xn = (x1, · · · , xn) of C(∞) which make the diagram

holimC F //

��

Map∗(N(C(∞)/xn), F (xn))

��

Map∗(N(C(∞)/xm), F (xm)) //Map∗(N(C(∞)/xn), F (xm))

commute for every map xn → xm in C(∞). Observe that the projection

εi : C(∞)/xn →
n∏
i=1

C/xi → C/xi

of Remark 4.1.1 allows us to form the composite

ωi : holim
C

F → Map∗(N(C/xi), F (xi))
N(εi)

∗
−−−−→ Map∗(N(C(∞)/xn), F (xi))

Taking the product over i and passing to the smash product finally yields the desired map

ωxn : holim
C

F
Q
ωi−−−→ Map∗(N(C(∞)/xn),

∏
F (xi))→ Map∗(N(C(∞)/xn), F (∞)(xn))

It is straigtforward, if tedious, to check that the required square commutes.
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The category C(∞) is filtered by the full subcategories C(n) consisting of objects xk =

(x1, . . . , xk) with 1 ≤ k ≤ n. Composing the map of the previous lemma with the restriction

of homotopy limits induced by the inclusion C(n) → C(∞), we obtain a map

holim
C

F → holim
C(n)

Fn

for every n. Moreover, we conclude from Corollary 3.2.7 that holimC(∞) F (∞) is the inverse

limit of these restrictions.

Recall that for any space X, we have a natural map X → Ω∞Σ∞X, the unit of the

adjuction Σ∞ ` Ω∞ between spaces and spectra. From naturality, it follows that we have

an induced map

holim
C(n)

Fn → holim
C(n)

Ω∞Σ∞Fn

Recall that the functor Ω∞ preserves homotopy limits, so that we have an equivalence

holimC(n) Ω∞Σ∞Fn ' Ω∞ holimC(n) Σ∞Fn. Hence composing with the map of the previous

paragraph and taking a transpose, we obtain a map

Σ∞ holim
C

F → holim
C(n)

Σ∞Fn

We have now proved

Theorem 4.2.2. Let F : C→ S∗ be a C-diagram of pointed simplicial sets. Then Σ∞ holimC F

maps naturally to the tower
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...

��

holim
C(n)

Σ∞F (n)

��

holim
C(n−1)

Σ∞F (n−1)

��

...

��

Σ∞ holim
C

F //

BB������������������������

<<xxxxxxxxxxxxxxxxxx
holim

C(1)
Σ∞F (1)

We refer to this as the stabilization tower for the homotopy limit of F .

Before examining the layers of the tower, let us consider two special cases.

Lemma 4.2.3. Let C be a category with finite products. Then the inclusion

in : C ↪→ C(n)

is cofinal for every n.

Proof. Let (x1, . . . , xk) ∈ C(n) where 1 ≤ k ≤ n and consider the category in/(x1, . . . , xk).

Unwinding the definition of the morphisms in C(n), it is elementary from the properties of

products that the object x1×· · ·×xk ∈ C is a terminal object of in/(x1, . . . , xk), and hence

the category is contractible.

As an immediate corollary, we deduce

Corollary 4.2.4. Let C be a category with finite products. Then the restriction map

holim
C(n)

Σ∞F (n) → holim
C

Σ∞F

is an equivalence for every n. In other words, when C has finite products, the tower is

constant. In particular
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holim
C(∞)

Σ∞F (∞) ' holim
C

Σ∞F

A particular example of this phenomenon is the category ∆, which one can easily check

has finite products. In this case, a functor F : ∆ → S∗ is just a cosimplicial space, and

the corollary tells us that the tower converges if and only if the linear approximation is an

equivalence. That is, if and only if the map

Σ∞ holim
∆

F → holim
∆

Σ∞F

is an equivalence. Since every homotopy limit can be written as a homotopy limit over

∆ via cosimplicial replacement, this example shows that the category ∆ plays a sort of

universal role for the convergence of the tower. We will exploit this idea in Chapter 6 where

we examine the convergence properties of the tower in more detail.

As a second example, let us show how to derive the results of [1] cited in the introduction.

Thus we assume that we have a functor F : C → S∗ which is constant, say F (x) = X for

all x ∈ C. Recall that we have a natural map π : C(n) → E
op
n . Since F is constant, we may

regard F (n) as the composition of π with the functor SX : E
op
n → S∗ given by

k 7→ X∧k

Now, for each n, Lemma 3.3.1 asserts that we have an equivalence

holim
C(n)

Σ∞F (n) ' holim
T (C(n))

Σ∞F (n) ◦ τ

where T (C(n)) is the twisted arrow category of Section 3.3, and τ : T (C(n)) → C(n) is the

natural projection. In other words, we may pass to the twisted arrow category without loss

of generality. Hence

holim
C(n)

Σ∞F (n) ' holim
T(C(n))

Σ∞(SX ◦ π ◦ τ)



40

by the previous paragraph.

On the other hand, by Proposition 3.3.2, the map

T (π) : T (C(n))→ T (Eop
n )

is a fibration of categories, and we deduce from Corollary 3.2.5 that

holim
T (C(n))

Σ∞(SX ◦ π◦)τ ' holim
T (Eop

n )
holim

T (π)−1(σ)
Σ∞(SX ◦ π ◦ τ)

where we have let σ : k → l denote an arbitrary surjection, that is, object of T (Eop
n ). But

for any f : (x1, . . . , xl)→ (x′1, . . . , x
′
k) ∈ T (π)−1(σ), we have

Σ∞(SX ◦ π ◦ τ)(f) = Σ∞X∧k

by tracing through the definitions. That is to say, this functor is also constant on the

subcategory T (π)−1(σ). Moreover, one easily checks that we have a cofinal inclusion

C×l → T (π)−1(σ)

Then it follows from Example 2.2.1 that

holim
T (π)−1(σ)

Σ∞X∧k ' Map(N(C×l),Σ∞X∧k)

' Map(Σ∞N(C)×l+ ,Σ∞X∧k)

' Map(Σ∞(C+)∧l,Σ∞X∧k)

Finally, stringing together the equivalences of the discussion, we find

holim
C(n)

Σ∞F (n) ' holim
T (Eop

n )
Map(Σ∞(C+)∧l,Σ∞X∧k)
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But the right side is now by definition equal to

hNatEop
n

(Σ∞(C+)∧k,Σ∞X∧k)

which coincides with Theorem 1.0.1 of the Introduction.

4.3 Layers in the Stabilization Tower

Our object now is to analyze the homotopy fiber of the map

holim
C(n)

Σ∞F (n) → holim
C(n−1)

Σ∞F (n−1)

We will present two descriptions of the homotopy fiber in question.

First, observe that we have a diagram of categories

C(n−1) //

��

C(n)

∗

where the vertical map is the unique map to the terminal category consisting of a single

object and no non-identity morphisms, and the horizontal map is just the inclusion of

subcategories. This diagram is given by a functor Q : Kop → Cat where Kop is the pushout

category. We set

C(n)/C(n−1) = ∇Q

This construction has the effect of “coning off” the subcategory C(n−1). In fact, the nerve

of this category is nothing other than the homotopy cofiber of the inclusion of nerves

N(C(n−1))→ N(C(n)).

Observe that this category is fibered over K, the pullback category, by construction.

Moreover, the functor Σ∞F (n) may be extended to this category by sending the cone point
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to the terminal object of Sp. Then an application of Corollary 3.2.5 shows

Proposition 4.3.1. The homotopy fiber of the map

holim
C(n)

Σ∞F (n) → holim
C(n−1)

Σ∞F (n−1)

is weakly equivalent to

holim
C(n)/C(n−1)

Σ∞F (n)

One disadvantage of this description is that there is quite a bit of redundant information

in the category C(n)/C(n−1). This construction leaves us with a much larger category, which

is nonetheless sometimes useful, as we will see in the next chapter in the case of products.

We can obtain an alternate description of the layers in the stabilization tower by first

subdividing the category C(n) using the twisted arrow construction of Section 3.3. By

Lemma 3.3.1, the above map agrees with the map

holim
T (C(n))

Σ∞F (n) → holim
T (C(n−1))

Σ∞F (n−1)

up to a natural weak equivalence, and hence has so does its homotopy fiber.

By construction, the category C(n) is opfibered over En, the category of non-empty

finite sets and surjections of cardinality at most n. In particular, if C = {∗} is the terminal

category, then C(n) ∼= En. Hence the category En turns out to be a kind of universal example

for the computation of the fiber we are interested in, so we turn first to an analysis of its

twisted arrow category.

First, consider the category T (En)op. An object in this category is a surjection σ : p→ q

where p, q ≤ n, while a morphism σ → τ is a commutative square

p

σ

��

// r

τ

��
q soo

Consider the three full subcategories defined by
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A0 = {σ : p→ q | p = n, q = n− 1}

A1 = {σ : p→ q | q = n}

A2 = {σ : p→ q | p ≤ n− 1}

Notice that if σ ∈ A0 and τ ∈ A1, then the fact that all maps under consideration are

surjections means that we can only have morphisms σ → τ , and not the other way around.

The same observation holds for the category A2. This shows that there is a well defined

functor

T (En)op → Kop

where Kop is the pushout category, which we depict here in order to fix notation

0 h //

k
��

1

2

The functor in question is defined by sending all the objects of the subcategory Ai to i.

Lemma 4.3.2. The functor

T (En)op → Kop

is an opfibration.

Proof. The only nontrivial arrows in the base category are h and k. We here exhibit a

cocartesian lift over k, the argument for h being similar. Let σ : n→ n− 1 ∈ A0. We claim

that the arrow the diagram
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n σ //

σ

��

n− 1

id
��

n− 1 n− 1
id
oo

represents a cocartesian lift for the pair (σ, k). This is because given any other morphism

(λ0, λ1) : σ → τ with τ ∈ A2

n
λ0 //

σ
��

p

τ

��

n− 1 q
λ1

oo

we must have p = q = n − 1 since q is a surjection and p ≤ n − 1. But observe that this

diagram factors uniquely as

n σ //

σ

��

n− 1
τ−1λ−1

1//

id
��

p = n− 1

τ

��

n− 1 n− 1
id
oo q = n− 1

λ1

oo

which shows the arrow (σ, idn−1) is cocartesian.

Corollary 4.3.3. For any small category C, the category T (C(n)) is fibered over the pullback

category K.

Proof. We have already remarked that C(n) is opfibered over En. Hence by Proposition 3.3.2

and Lemma 4.3.2, the composite

T (C(n))→ T (En)→ K

is a fibration.

We denote the fibration constructed in Corollary 4.3.3 by
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πnC : T (C(n))→ K

It will be convenient to have a more concrete description of the fibers, which we now pursue.

First, consider (πnC)−1(1). The objects of this category consist of all arrows (x1, . . . , xn)→

(y1, . . . , yn) between n-tuples of objects of C. We can describe the situation as follows: the

category C×n has a natural action of the n-th symmetric group Σn. Considering Σn as a

one object category, this means we have a functor

snC : Σop
n → Cat

sending the unique object to C×n. (The reason for the opposite appearing here is that this

action is merely the restriction of our functor Eop → Cat to the set with n elements.) In

order to simplify the notation, we set

Σop
n C =

∫
snC

Unraveling the definitions, we find that

(πnC)−1(1) ∼= T (Σop
n C)

The subcategory (πnC)−1(2) ⊆ T (C(n)), on the other hand is canonically identified with

T (C(n−1)). Finally, the category (πnC)−1(0) is slightly more mysterious. It plays the role in

this setup of the fat diagonal in [1]. For now, we simply assign it a name

DnC = (πnC)−1(0)

Proposition 4.3.4. Let F : C→ S∗ be a C-diagram of pointed, fibrant simplicial sets. The

the square
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holim
T (C(n))

Σ∞F (n)
//

��

holim
T (Σop

n C)
Σ∞F (n)

��

holim
T (C(n−1))

Σ∞F (n−1)
// holim
DnC

Σ∞F (n)

is a homotopy pullback.

Proof. As we have shown that the map

πnC : T (C(n))→ K

is a fibration of categories, the statement of the proposition is just an application of Corollary

3.2.5 with base category K, the pullback category.

Consider the subcategory of T (C(n))op spanned by both T (Σop
n C)op and (DnC)op. This

is exactly the subcategory of all arrows (x1, . . . , xp) → (y1, . . . , yq) where p, q ≥ n − 1.

Moreover, we have seen that this subcategory is opfibered over the category consisting of

just a single morphism 0 h−→ 1. As in the first description of the fiber above, we can extend

this data to a functor G : Kop → Cat, that is, a pushout diagram of categories, which we

depict as

0

k

��

h // 1
G +3

(DnC)op

��

// T (Σop
n C)op

2 ∗

where the vertical morphism in the right hand diagram is just the map to the terminal

category consisting of a single object.

We use the notation

C×n/DnC =
(∫

G

)op

For the Grothendieck construction on this diagram. This may be slightly misleading, as
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the category above has been subdivided using the twisted arrow construction, which is not

reflected in the notation. On the other hand, we have seen that this extra subdivision does

not really affect the homotopy type of homotopy limits indexed by the category, and the

current notation does make the connection with the results of [1] more clear. In particular,

we now have

Corollary 4.3.5. The homotopy fiber of the map

holim
C(n)

Σ∞F (n) → holim
C(n−1)

Σ∞F (n−1)

is weakly equivalent to

holim
C×n/DnC

Σ∞F (n)

Proof. By construction, the category C×n/DnC is fibered over the pullback category K.

After restricting the functor F (n) to the subcategory consisting of DnC and T (Σop
n C), we

then extend it to be the one-point space on the cone point of C×n/Dn. An application of

Corollary 3.2.5 shows that the homotopy limit over this category computes the fiber of the

map in question.



Chapter 5

The Stabilization Tower for

Products

In this chapter we specialize to the case when our indexing category C is discrete. That is,

C ∼= S for some finite set S regarded as a discrete category. We show that our decomposition

recovers the classical stable splitting of a product. This special case will play a crucial role

in our proof of the convergence for arbitrary homotopy limits.

5.1 Stable Splitting of Products

We recall the following classical result

Lemma 5.1.1. For pointed spaces X and Y , we have

Σ∞X × Y ' Σ∞X ∨ Σ∞Y ∨ Σ∞X ∧ Y

We now recast this result in terms of homotopy limits. Consider the set S = {0, 1} as

an indexing category. Then a functor F : S → S∗ is just an S-indexed collection of pointed

spaces, in the current case, just a pair X = F (0) and Y = F (1). Moreover, we have

48
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holim
S

F ' X × Y

On the other hand, we can view each of the terms appearing on the right hand side in

Lemma 5.1.1 as a smash product over the non-empty subsets {0}, {1}, {0, 1} of S. We write

P+(S) for the set of non-empty subsets of S. Furthermore, in the stable category, the wedge

appearing on the right side of the equivalence in Lemma 5.1.1 is the categorical product.

Hence we can write

∏
U∈P+(S)

Σ∞
(∧
u∈U

F (u)

)

Lemma 5.1.2. For a finite set S and functor F : S → S∗, we have

Σ∞
(∏
s∈S

F (s)

)
'

∏
U∈P+(S)

Σ∞
(∧
u∈U

F (u)

)

Proof. Apply induction on the cardinality of S.

5.2 Convergence for Finite Products

We now consider a finite set S of cardinality k regarded as a discrete category and analyze

the category S(n). We observe here that the analysis carried out below carries over without

change to the case n =∞.

An object of S(n) is a p-tuple of elements of S which we denote (x1, . . . , xp) where

1 ≤ p ≤ n. Since by assumption |S| = k, there can be at most k distinct elements among

the xi. By regarding the components of the p-tuple (x1, . . . , xp) as a finite set in their own

right, we obtain a subset of S which we refer to as the characteristic subset of (x1, . . . , xp).

We write

χ(x1, . . . , xp) = {x1, . . . , xp} ⊆ S
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Thus χ has the effect of removing the duplicate among the p-tuple (x1, . . . , xp). In particular,

we may have |χ(x1, . . . , xp)| < p. An p-tuple (x1, . . . , xp) for which |χ(x1, . . . , xp)| = p will

be refered to as a generating object, and in this case, we must have p ≤ k = |S|.

As there are no non-identity morphisms in S, a morphism (x1, . . . , xq) → (x1, . . . , xp)

is completely determined by a surjection σ : p → q and by the property that xi = xσ(i)

for all 1 ≤ i ≤ p. In particular, the surjectivity of σ implies that every one of the xi must

appear among the collection of elements {x1, . . . , xq} so that we must have χ(x1, . . . , xq) =

χ(x1, . . . , xp). (Informally, a morphism in S(n) can only duplicate elements which already

exist in the domain, hence the distinct elements of the domain and codomain coincide.) This

shows that χ is constant on the connected components of S(n) and hence can be regarded

as a functor

χ : S(n) → P≤n+ (S)

where P≤n+ (S) is the set of non-empty subsets of S of cardinality at most n, regarded as a

discrete category.

Choose a total ordering on the finite set S and let U 6= ∅ ⊆ S. We may write U =

{x1, . . . , xq} where x1 < · · · < xq in the ordering on S. If |U | = q ≤ n, then the ordering

gives us a well defined object (x1, . . . , xq) ∈ S(n).

κn : P≤n+ → S(n)

and since the xi are all distinct, χ(x1, . . . , xq) = {x1, . . . , xq} = U so that we have χ◦κn = id.

Now let (x1, . . . , xp) be any other object of S(n) such that χ(x1, . . . , xp) = U . We

constuct a surjection σ : p→ q as follows. Set

σ(i) = j ⇐⇒ xi = xj

where 1 ≤ i ≤ p and 1 ≤ j ≤ q. This map is clearly unique, which shows that the object
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κn(U) = (x1, . . . , xq) is initial in χ−1(U). In particular, χ−1(U) is connected.

Proposition 5.2.1. Let S be a finite set regarded as a discrete category.

1. There is a morphism (x1, . . . , xq) → (x′1, . . . , x
′
p) ∈ S(n) if an only if the domain and

codomain have the same characteristic subset.

2. The connected components of S(n) are in bijective correspondence with the subsets of

S of cardinality at most n.

3. Any generating object is initial for its connected component in S(n).

4. The functor κn : P
≤n
+ → S(n) is cofinal.

Proof. For 1, we have shown above that if we have a morphism (x1, . . . , xq)→ (x′1, . . . , x
′
p)

then we must have χ(x1, . . . , xq) = χ(x′1, . . . , x
′
p). On the other hand, given two objects

(x1, . . . , xq) and (x′1, . . . , x
′
p) for which χ(x1, . . . , xq) = χ(x′1, . . . , x

′
p), we may construct a

surjection σ : p→ q as follows. For each j ∈ q, there is some i ∈ p such that xj = x′i, so put

σ(i) = j. Since q < p, there may be elements l ∈ p which are not covered by this definition.

But for such l, we have m ∈ q such that x′l = xm, and we define σ(l) = m. This map is

surjective by construction.

We have already observed that the composition χ◦κn is the identity on P≤n+ (S), so that

we have at least an injective correspondence by associating to each subset U the connected

component of κn(U). Moreover, for any object (x1, . . . , xp), the object (κn ◦ χ)(x1, . . . , xp)

has the same characteristic object as (x1, . . . , xp) and hence there is a map between them

by 1. Hence every object is in a connected component associated to some U .

Statement 3 is clear from the dicussion above, and 4 follows from 3, since the the category

κn/(x1, . . . , xp) will always consist of a single point, namely χ(x1, . . . , xp).

Proposition 5.2.1 allows us to completely determine the struction of the Goodwillie tower

in the case of products.

Corollary 5.2.2. For n ≥ k, where k = |S|, the restriction map
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holim
S(n)

Σ∞F (n) → holim
S(k)

Σ∞F (k)

is an equivalence.

Proof. In view of Proposition 5.2.1, it is easy to check that for any (x1, . . . , xp), the slice

category in/(x1, . . . , xp) where in denotes the inclusion

in : S(k) ↪→ S(n)

has an initial object given by any generating object in the connected component of (x1, . . . , xp).

We conclude that in is a cofinal functor and the claimed equivalence follows from Proposition

2.2.1.

Corollary 5.2.3. We have

holim
S(n)

Σ∞F (n) '
∏

U∈P≤n+

Σ∞
(∧
u∈U

F (u)

)

Proof. From Proposition 5.2.1, the inclusion

κn : P≤n+ (S)→ S(n)

is cofinal, so the result again follows from Proposition 2.2.1 and the definition of F (n).

Remark 5.2.1. The description of holimS(n) Σ∞F (n) given by the Corollary depends on

a choice of ordering on the finite set S and hence is not natural with respects to maps of

finite sets. In a sense, the advantage of writing what ultimately turns out to be a cartesian

product as a homotopy limit over a much larger category is exactly to recover naturality

with respect to maps of finite sets.

Theorem 5.2.4. Let S be a finite set, and F : S → S∗ a functor. Then the stabilization

tower for Σ∞ holimS F converges.
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Proof. As we have remarked, the above analysis carries over to the case n =∞. Applying

Corollary 5.2.3 and Lemma 5.1.2, we find that

holim
S(∞)

Σ∞F (∞) '
∏

U∈P+(S)

Σ∞
(∧
u∈U

F (u)

)
' Σ∞

(∏
i∈S

Xi

)
' Σ∞ holim

S
F

which is what we wanted to prove.

5.3 Layers in the Stabilization Tower for Products

For n > k = |S|, Corollary 5.2.2 shows that the fiber of the restriction map

holim
S(n)

Σ∞F (n) → holim
S(n−1)

Σ∞F (n−1)

is contractible. We now compute the fiber for n ≤ k.

Recall from Proposition 4.3.1 that we may compute the fiber of the map in question as

a homotopy limit over the category S(n)/S(n−1) which is by definition the category fibered

over K determined by the diagram

S(n−1)

��

// S(n)

∗

From Proposition 5.2.1, we see that there is a natural transformation of diagrams of cate-

gories

P≤n−1
+ (S)

��

// P≤n+ (S) eκ +3
S(n−1) //

��

S(n)

∗ ∗

induced by the inclusions κn : P≤n+ (S) → S(n) which is cofinal on the fibers. One easily

checks that the induced functor
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P≤n+ (S)/P≤n−1
+ (S)→ S(n)/S(n−1)

is again cofinal.

The category P≤n+ (S)/P≤n−1
+ (S) is nearly discrete, with one object comprising its own

connected component for each subset U ⊆ S such that |U | = n, together with one larger

connected component linking together all the subsets U 6= ∅ ⊆ S such that |U | < n. This

larger component has a projection which retracts its “leaves”, and as Σ∞F (n) takes the

same values at these objects we can regard its restriction to this component as obtained by

composition with the retraction. But this retraction is visibly cofinal, as in the following

diagram.

•

��

•

��

· · · •

��
• • · · · • +3 • • · · · •

∗

hhPPPPPPPPPPPPPP

aaBBBBBBBB

==||||||||
∗

hhPPPPPPPPPPPPPP

aaBBBBBBBB

==||||||||

On the other hand, the category remaining on the right in the above diagram has an

initial object, the cone point. The value of Σ∞F (n) here is contractible by definition. As a

result, the connected component of P≤n+ (S)/P≤n−1
+ (S) containing the cone point contributes

nothing to the homotopy limit. As the remaining componenets are discrete, we have proved

Proposition 5.3.1. Let S be a finite set with |S| = k. For n ≤ k we have

hofib
(

holim
S(n)

Σ∞F (n) → holim
S(n−1)

Σ∞F (n−1)

)
'
∏
U⊆S
|U |=n

Σ∞
(∧
u∈U

F (u)

)

Remark 5.3.1. This calculation is consistent with the interpretation of the stabilization

tower in the Goodwiliie Calculus. We see that in the case of discrete categories, the fibers

are exactly the n-homogeneous pieces one would expect.



Chapter 6

Convergence

This chapter contains the main result of this thesis: a theorem describing conditions under

which the stabilization tower of a homotopy limit in fact converges to the correct homotopy

type. As we pointed out in Section 4.2, the category ∆ serves as a universal example for

convergence exactly because every homotopy limit can be reduced to one indexed by ∆ via

cosimplicial replacement. Moreover, as ∆ has finite products, convergence can be detected

at the linear term. That is, for a cosimplicial space X : ∆→ S∗, the stabilization tower for

X converges if an only if the map

Σ∞ holim
∆

X → holim
∆

Σ∞X

is an equivalence.

In Section 2.4 we pointed out that for a functor F : C→ S∗, the cosimplicial replacement

of F , which we denoted XF , is Reedy fibrant, and hence

holim
∆

XF ' TotXF

Intuitively, then, we are reduced to finding conditions which ensure we have an equivalence

Σ∞TotXF ' Tot Σ∞XF

55
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As the partial totalizations Totp can be calculated using cubical diagrams (Proposition

2.5.4), our goal will be to establish bounds on the connectivity of these diagrams and argue

using Goodwillie’s Generalized Blakers-Massey Theorem (Theorem 2.5.3). A key moment

is Proposition 6.3.1, where we are able to transfer the connectivity results on our unstable

cubes into the stable world. Passing to the inverse limit, we derive our required equivalence.

6.1 Cubes of Injections

Let ∆ be the category of finite ordinals and order preserving maps. The objects are the

finite sets of the form [p] = {0, 1, . . . , p} with the natural ordering, and the morphisms are

just the (weakly) order preserving maps. In what follows we will almost exclusively be

working with objects and morphisms in the category ∆, or a category closely related to ∆,

and so will will often omit the brackets when it will not cause confusion. Thus p ∈ ∆ is

shorthand for [p] ∈ ∆, and x ∈ p means 0 ≤ x ≤ p. We write ∆M for the subcategory

consisting of just the monomorphisms, and ∆E for the subcategory consisting of just the

epimorphisms.

We let [2] denote the totally ordered set {0, 1, 2} regarded as a category. We draw this

category here to fix notation for its objects and morphisms.

[2]

0
i2 //

i0
  

@@@@@@@@ 2

1
i1

>>~~~~~~~~

Let µ : q → p ∈ ∆M be a monomorphism. We write Pµ for the full subcategory of

HomCat([2],∆M) defined by

Pµ = {k : [2]→ ∆M | k(i2) = µ}
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Thus an object k ∈ Pµ is a functor k : [2] → ∆M for which k(i1) ◦ k(i0) = k(i2) = µ. In

particular, each functor determines a factorization of the given monomoprhism µ, and thus

we will occasionally refer to the objects of Pµ as factorizations. We write k0 = k(i0) and

k1 = k(i0). The functor itself is completely determined by these two morphisms together

with the object k(1) ∈ ∆. It will be useful to write k for both the functor itself, and the

object k(1) ∈ ∆, though if any confusion may arise, we will write [k] = k(1) to emphasize

that k(1) is an object of ∆. Thus the statement k = (k0, k1) ∈ Pµ corresponds to a diagram

q
µ

//

k0 ""DDDDDD p

k
k1

<<yyyyyy

in ∆M. For h, k ∈ Pµ, a morphism α : h→ k is a commutative diagram

h
h0

""EEEEEE

α

��

q

h0
<<yyyyyy

k0 ""EEEEEE p

k
k0

<<yyyyyy

Observe that we have a canonical functor ev1 : Pµ → ∆M defined by evaluation at the

object 1 ∈ [2].

Recall that for a finite set S, we write PS for the partially ordered set of subsets of S,

regarded as a category. Our notation is motivated by the following observation:

Lemma 6.1.1. Let µ : q → p ∈ ∆M be a monomorphism. Regard p \ imµ ⊆ p as a finite

set by simply forgetting the ordering. Then we have

Pµ ∼= Pp\imµ

Proof. The isomophism is specified by sending an object k ∈ Pµ to the subset im k1 \ imµ.

The rest of the details are left to the reader.

Hence given a cosimplicial space X : ∆ → S∗ and a monomorphism µ : q → p ∈ ∆M,
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the composition

Pµ
ev1−−→ ∆ X−→ S∗

is a cubical diagram in the sense of Definition 2.5.1. We refer to this as the cube of injections

generated by µ.

It is tempting at this point to abandon use of the categories Pµ and work instead with

the finite subsets of p \ imµ. For our purposes, this is slightly inadequate. Observe that a

morphism α : h → k ∈ Pµ can be regarded, by means of evaluation, as a legitimate arrow

α : [h] → [k] ∈ ∆. When there is a cosimplicial space X under consideration, it is much

more convenient to retain this interpretation of the morphisms of Pµ, as X is functorial

with respect to their composition.

On the other hand, the identification of Pµ with the subsets of p \ imµ lets us perform

certain set-theoretic constructions on the objects k ∈ Pµ. For example, given an element

x ∈ p \ imµ, we will often write x ∈ k when we strictly mean ∃i ∈ k s.t. k1(i) = x.

Moreover, if x ∈ p \ imµ and x /∈ k, then we obtain a unique factorization

q
µ

//

%%KKKKKKK p

k ∪ {x}

99sssssss

In short, it will be convenient to slightly blur the distinction between factorizations of µ

and subsets of p \ imµ. We will attempt to be precise when any confusion might arise.

For a monomorphism µ : q → p, we defined the adjacency of µ, denoted adjµ, to be the

object of Pµ defined by

adjµ = {x ∈ p | x = µ(y)± 1 for some y ∈ µ}

Thus adjµ consists of the elements of p which are directly next to elements in the image of

µ. If x ∈ adjµ, we will refer to x as an adjacent element. Observe that for p − q > 0, we
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have adjµ 6= ∅.

Let µ : q → p ∈ ∆M be a monomorphism and let i ∈ q − 1. The element i is called

internal to µ if µ(i + 1) = µ(i) + 1. We let intµ denote the set of internal elements.

Observe that it is possible that intµ = ∅. If k = (k0, k1) ∈ Pµ is a factorization, then one

easily checks that k0(i) ∈ int k1 for each i ∈ intµ. Given any subset U ⊆ intµ, we set

Uk = {k0(i) | i ∈ intµ}.

Finally, for an epimorphism σ : p→ q ∈ ∆E, we put

Vσ = {i ∈ p | σ(i) = σ(i+ 1)}

The motivation for this definition is the following: given a q-chain x0 → · · · → xq in some

small category C, we obtain by composition with σ a p-chain x′0 → · · · → x′p. Then for all

i ∈ Vσ, the map x′i → x′i+1 is an identity in C. Thus one thinks of the elements of Vσ as

those which are forced to be degenerate under precomposition with σ.

6.2 The Cubical Diagram Associated to a Functor

Recall from Section 2.4 that for a functor F : C → S∗, we have an associated cosimplicial

space XF , called the cosimplicial replacement of F , defined by

XF (p) =
∏
−→x ∈Cp

F (xp)

As we have remarked above, for any monomorphism µ : q → p ∈ ∆M, the composition

Pµ
ev1−−→ ∆ XF−−→ S∗

is a cubical diagram which we will denote Fµ.

Let p ∈ ∆. Given any subset U ⊆ p such that i < p for all i ∈ U we define

Cp|U = {x0 → · · · → xp ∈ Cp | xi → xi+1 is not an identity in C ∀i ∈ U}
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Then if U ⊆ intµ is a collection of internal elements of µ, we may define a cubical diagram

FUµ : Pµ → S∗ by

FUµ (k) =
∏

−→x ∈Ck|Uk

F (xk)

Observe in particular that Fµ = F∅µ.

Proposition 6.2.1. Let F : C → S∗ be a functor, µ : q → p ∈ ∆M a monomorphism, and

U ⊆ intµ a collection of internal elements. Then we have

tfib FUµ = Ωp−q
∏

−→x ∈Cp|(Up∪Vσ)

F (xp)

for any retraction σ : p→ q of µ.

Proof. We proceed by induction. For p − q = 0, the result is trivial. For the inductive

step, let j ∈ adjµ be an adjacent element. Without loss of generality we may assume that

j + 1 ∈ imµ, the proof in the alternative case being similar. Consider the cubical diagram

H defined by

H(k) =



∏
−→x ∈Ck|Uk

F (xk) j /∈ k

∏
−→x ∈Ck|Uk

xj→xj+1=idj

F (xk) j ∈ k

Observe that for k ∈ Pµ with j /∈ k, the induced map H(k)→ H(k ∪{j}) is the identity. It

follows that tfib H ' ∗.

Moreover, we have a map of cubical diagrams, that is, a natural transformation θ :

FU → H whose component at k ∈ Pµ will be denoted θk. The components θk are given by

θk = id for j /∈ k and for j ∈ k, θk is the projection
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∏
−→x ∈Ck|Uk

F (k)→
∏

−→x ∈Ck|Uk
xj→xj+1=idj

F (xk)

In particular, θk is always a fibration.

Now, since H is contractible, tfib FU is equivalent to the total fiber of the cube L defined

by

k 7→ hofib θk

But clearly we have

L(k) =


∗ j /∈ k∏

−→x ∈Ck|(Uk∪j)

F (xk) j ∈ k

Put q′ = q∪{j} and U ′ = U ∪{j}. Observe that our assumptions on j ensure that j ∈ intµ′

where µ′ is defined by the factorization diagram

q
µ

//

dj %%KKKKKKK p

q ∪ {j}
µ′

99sssssss

so that this makes sense. Now, one easily sees that the homotopy fiber of L in the direction

of j conincides with the cubical diagram

Ω ◦ FU
′

µ′ : Pµ′ → S∗

and the result follows by induction.

Corollary 6.2.2. Let F : C → S∗ be a C-diagram of pointed, fibrant simplicial sets. Let

µ : q → p ∈ ∆M be a monomorphism. Then
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tfib Fµ '
∏

x0→···→xp
∈Cp|Vσ

Ωp−qF (xp)

for any retraction σ : p→ q of µ.

Proof. This is just the special case U = ∅ of Proposition 6.2.1.

6.3 Stabilization of Cosimplicial Spaces

In this section we use Goodwillie’s Generalized Blakers-Massey Theorem, Theorem 2.5.3,

to exhibit a condition on a functor F : C→ S∗ under which we have an equivalence

Σ∞TotXF ' Tot Σ∞XF

where XF is the cosimplicial replacement of F . This will be the key ingredient in proving

convergence of the stabilization tower for holimC F .

Definition 6.3.1. A finite category C is called strongly finite if dim N(C) < ∞. That is,

if there exists some k such that every simplex of dimension higher than k is degenerate. It

follows that for each x ∈ C, we have dim N(C/x) <∞ as well. We write

δ(x) = dim N(C/x)

Let F : C→ S∗ be a C-diagram of pointed, fibrant simplicial sets. For a pointed, fibrant

simplicial set Z, we let c(Z) denote the connectivity of Z.

Proposition 6.3.1. Let F : C→ S∗ be a C-diagram of pointed, fibrant simplicial sets where

C is strongly finite category with dim N(C) = n. Assume that for all x ∈ C we have

c(F (x)) ≥ δ(x)

Then the map



63

Σ∞TotpXF → Totp Σ∞XF

is (bp/nc − 1)-connected.

Proof. By Proposition 2.5.4, we may compute TotnXF as a homotopy limit

TotpXF ' holim
∆M/p

XF ◦ πp

As we observed in Section 2.5, the composition XF ◦πp can be regarded as a functor on the

category P+
p+1, that is, as a cubical diagram missing its initial object. We extend this to

a cubical diagram denoted Fp : Pp+1 → S∗ by setting Fp(∅) = TotpXF . Observe that this

cubical diagram is cartesian by construction.

Now, a non empty subset T ⊆ p+ 1 corresponds to a monomorphism µT : q → p for

some q. Moreover, the cubical diagram ∂p+1\TFp is exactly the restriction of Fp to the

subcategory PµT , which we denote FµT . By Corollary 6.2.2, we have

tfib FµT '
∏

x0→···→xp
∈Cp|VσT

Ωp−qF (xp)

where σT : p → q ∈ ∆E is an arbitrary retraction of µT . Now, for a fixed chain x0 →

· · · → xp ∈ Cp/σ, there are at least p − q non-identity arrows xi → xi+1 by definition.

Hence if p − q > dim N(C), the above product is indexed by the empty set, and we have

tfib FµT ' ∗ which implies that the cubical diagram FµT is cartesian. For p − q ≤ n, we

have c(F (xp)) ≥ δ(xp) ≥ p− q so that Ωp−qF (xp) is at least connected, that is, 0-connected

and hence the cube FµT is 1-cartesian.

Now, in the notation of Theorem 2.5.3, we set κ(T ) = 1 for all T ⊆ p+ 1 such that

|T | ≤ n and κ(T ) =∞ otherwise. We conclude that the cubical diagram Fp is d-cocartesian

where d is the minimum of
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(p+ 1)− 1 +
∑
α

κ(Tα)

over all partitions {Tα} of p+ 1 by non-empty sets. Taking the partition of p+ 1 by

singletons, we see that this quantity must be finite. Hence no Tα may appear in the partition

such that |Tα| > n, since in this case we have κ(Tα) =∞. Now, there are bp+1
n c subsets of

cardinality n, and we clearly acheive a minimum in the above expression by selecting these

subsets, along with a single subset containing the remaining elements if n - (p + 1). For

each such Tα we have κ(Tα) = 1, and hence we may take

d = p+
⌊
p+ 1
n

⌋
(Strictly speaking, we may take d+ 1 when n - (p+ 1), but we will not need this below.)

Following the discussion of [10, Remark 1.19], we observe that the functor Σ∞ preserves

d-cocartesian cubes, since it preserves homotopy colimits. Moreover, using the fact that

stably we have hofib = Ω hocofib, one sees easily by induction that a k-cubical diagram of

spectra is d-cocartesian if any only if it is (d−k+1)-cartesian. (Roughly, we pick up a shift

by the dimension of the cube.)

In the case at hand, k = p+ 1 so that the cube Σ∞Fp is

p+
⌊
p+ 1
n

⌋
− (p+ 1) + 1 =

⌊
p+ 1
n

⌋
cartesian. This says that the map

Σ∞Fp(∅) = Σ∞TotpXF → Totp Σ∞XF

is (bp+1
n c − 1)-connected.

Corollary 6.3.2. Let C be a strongly finite category with dim N(C) = n and F : C → S∗ a

C-diagram of pointed, fibrant simplicial sets with the property that
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c(F (x)) ≥ δ(x)

for all x ∈ C. Then we have an equivalence

Σ∞TotXF → Tot Σ∞XF

Proof. The expression bp+1
n c − 1→∞ as p→∞, so we see that for each k we may choose

Nk such that for p ≥ Nk we have an isomorphism

πk(Σ∞TotpXF ) ∼−→ πk(Totp Σ∞XF )

Passing to inverse limits, we find that πk(Σ∞TotXF ) ∼= πk(Tot Σ∞XF ) for all k and the

result follows. (In the language of [3], the two Tot towers are pro-isomorphic.)

Remark 6.3.1. As we pointed out in Section 2.4, the cosimplicial space XF associated to a

funtor is always Reedy fibrant. Hence we find that under the conditions of Corollary 6.3.2,

we have an equivalence

Σ∞ holim
∆

XF
∼−→ holim

∆
Σ∞XF

This formulation will prove useful in the next section.

6.4 Convergence of the Stabilization Tower

In the previous section we saw that if F : C→ S∗ is a C-diagram of pointed, fibrant simplicial

sets with C strongly finite and such that for all x ∈ C we have

c(F (x)) ≥ δ(x)

then there is an equivalence
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Σ∞ holim
∆

XF → holim
∆

Σ∞XF

where XF is the cosimplicial replacement of F . Recall that the cosimplicial replacement

XF is defined by

XF (p) =
∏

x0→···→xp
F (xp)

where x0 → · · · → xp ∈ Cp denotes an arbitrary p-chain in C. We observe that there is

a “target” functor T : Cp → C sending each p-chain to its last object, and that F (xp) =

(F ◦ T )(x0 → · · · → xp). If the category C is strongly finite, then the collection of all

p-chains in C forms a finite set, that is to say, we may regard Cp as discrete, finite category.

Hence, in this case, by Theorem 5.2.4 we may continue the above equivalence:

holim
∆

Σ∞XF ' holim
∆

Σ∞ holim
Cp

F ◦ T ' holim
∆

holim
(Cp)(∞)

Σ∞(F ◦ T )(∞)

The iterated homotopy limit appearing on the right hand side allows us to apply Corol-

lary 3.2.5 by constructing a new category fibered over ∆. Define a functor P : ∆op → Cat

by

p 7→ (Cp)(∞)

As the objects of (Cp)(∞) are n-tuples of p-chains in C, this is functorial over maps µ : q →

p ∈ ∆ by forming the composite chain component-wise. Now set

∆C(∞) = ∇P

One should view the category ∆C(∞) as a kind of fattened version of the simplex cat-

egory of C(∞). Unwinding the definitions, we find that an object of ∆C(∞) is a triple

(p, n, (−→x 1, . . .−→x n)) where p ∈ ∆, n is a finite set with n elements, and each −→x i is a p-chain
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in C. Notice that n and p are determined by the number of components in the tuple and

the length of the chains respectively, so we will often omit them from the notation.

There is a functor

T̃ : ∆C(∞) → C(∞)

defined by T̃ (−→x 1, . . . ,−→x n) = (T (−→x 1), . . . , T (−→x n)) = (x1
p, . . . , x

n
p ) where we have put −→x i =

xi0 → · · · → xip in agreement with our usual conventions on p-chains. Notice, however, that

this necessitates the use of superscripts to index the components of the object (x1
p, . . . , x

n
p ) ∈

C(∞). We will continue with this convention in the proof of the next lemma.

Lemma 6.4.1. The functor

T̃ : ∆C(∞) → C(∞)

is cofinal. Moreover, we have F (∞) ◦ T̃ = (F ◦ T )(∞).

Proof. Let (x1, . . . , xn) ∈ C(∞). Our aim is to show that the category T̃ /(x1, . . . , xn) is

contractible. An object of this category is a k-tuple of q-chains (−→y 1, . . . ,−→y k) ∈ ∆C(∞)

together with a map

(y1
q , . . . , y

k
q )→ (x1, . . . , xn)

in C(∞). Recall that such a map is determined by a surjection σ : n → k and a family of

morphisms {fi : yσ(i)
q → xi}ni=1. This surjection σ determines a map

σ∗ : (−→y 1, . . . ,−→y k)→ (−→y σ(1), . . . ,−→y σ(n))

in ∆C(∞). Now, for each i, the map fi : yσ(i) → xi allows us to construct a new chain

−→z i = y
σ(i)
0 → · · · → yσ(i)

q
fi−→ xi
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and the coface map d0 : q → q + 1 induces morphism (−→y σ(1), . . . ,−→y σ(n))
d0∗−→ (−→z 1, . . . ,−→z n).

Observe that by construction (−→z 1, . . . ,−→z n) ∈ T̃−1(x1, . . . , xn). In fact, the association

(−→y 1, . . . ,−→y k) 7→ (−→z 1, . . . ,−→z n)

determines a functor T̃ /(x1, . . . , xn) → T̃−1(x1, . . . , xn) and the composition d0
∗ ◦ σ∗ is a

natural transformaion from the identity on T̃ /(x1, . . . , xn) to its image under this functor.

We conclude that the nerves of these two categories are simplicially homotopy equivalent,

and thus we are reduced to showing that the category T̃−1(x1, . . . , xn) is contractible.

But notice that (x1, . . . , xn) ∈ T̃−1(x1, . . . , xn) by considering it as an n-tuple of 0-

chains. For any other object (−→y 1, . . . ,−→y n) ∈ T̃−1(x1, . . . , xn) where each −→y i is a p-chain,

we have yip = xi by definition. Now the map [0] → [p] in ∆ which sends 0 7→ p induces a

map

(x1, . . . , xn)→ (−→y 1, . . . ,−→y n)

in T̃−1(x1, . . . , xn). Applying the nerve functor, we find that the collection of such maps

forms a contraction of N(T̃ (x1, . . . , xn)) onto the vertex represented by (x1, . . . , xn).

For the second statement, we have

(F (∞) ◦ T̃ )(x1, . . . , xn) = F (x1) ∧ · · · ∧ F (xn) = (F ◦ T )(∞)(x1, . . . , xn)

for all objects (x1, . . . , xn) ∈ ∆C(∞).

We can now prove out main convergence result.

Theorem 6.4.2. Let C be a strongly finite category and let F : C → S∗ be a C-diagram of

pointed, fibrant simplicial sets such that for all x ∈ C we have

c(F (x)) ≥ δ(x)
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Then the stabilization tower for F converges. That is, we have an equivalence

Σ∞ holim
C

F
∼−→ holim

C(∞)
Σ∞F (∞)

Proof. In view of the preceding discussion, we have the following chain of equivalences

Σ∞ holim
C

F ' Σ∞ holim
∆

XF

' holim
∆

Σ∞ holim
Cp

F ◦ T

' holim
∆

holim
(Cp)(∞)

Σ∞(F ◦ T )(∞)

' holim
∆C(∞)

Σ∞F (∞) ◦ T̃

' holim
C(∞)

Σ∞F (∞)

where the last step follows from the cofinality exhibited in Lemma 6.4.1.

Corollary 6.4.3. Let C be a strongly finite category and F : C→ S∗ a C-diagram of pointed

fibrant simplicial sets which is constant at some space X. Suppose that c(X) > dim N(C).

Then the Goodwillie tower of the functor Σ∞Map(N(C)+, X) of Theorem 1.0.1 converges.

Proof. We have already seen in Section 4.2 that the two towers coincide under the hypothesis

that F is constant. The convergence of one is then equivalent to the convergence of the

other, and our conditions satisfy the requirements of Theorem 6.4.2.
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