Homotopy Type Theory - Exercise Sheet 4

1. Show that

$$S^1 \simeq \mathsf{Susp} \, \mathbb{B}\mathsf{ool}$$

where S^1 is the circle defined using base and loop.

2. Define the fundamental group of a pointed type (X, x) as

 $\pi_1(X, x) := |x \equiv x|_0$

Show that $\pi_1(X, x)$ is a group.

- 3. Show that X is a proposition if and only if $X \to X$ is contractible.
- 4. Let (X, x) be a pointed type. We write $\Omega(X, x)$ for the *loop space* of (X, x) which is the pointed type $(x \equiv x, \text{refl})$. Write $\Omega^n(X, x)$ for the *n*-th iteration of this construction (and write $\Omega^0(X, x) := (X, x)$).

Show that a type X is an *n*-type (for $n \ge -1$) if and only if $\Omega^{n+1}(X, x)$ is contractible for all x : X. *Hint:* work by induction.

5. Show that the *n*-th truncation $|-|_n$ preserves products:

$$|X \times Y|_n \simeq |X|_n \times |Y|_n$$