Homotopy Type Theory - Exercise Sheet 2

1. Let X : Type and let $P : X \to$ Type be a dependent type over X. Show that if x, y : X and $p : x \equiv y$ then there is a function:

transport
$$P p : P x \to P y$$

- 2. Show that the transport map is actually an equivalence.
- 3. Let X: Type, x, y, z : X and $p : y \equiv z$. Show that

transport $(\lambda w.x \equiv w) p : x \equiv y \rightarrow x \equiv z$

is given by composition with the path p.

4. Characterize the equalize of a dependent sum as follows: suppose X and P are as above. For elements (x_0, p_0) and (x_1, p_1) in $\sum_{x:X} Px$ and show that

$$((x_0, p_0) \equiv (x_1, p_1)) \simeq (\sum_{p:x \equiv y} \operatorname{transport} P \, p \, x_0 \equiv x_1)$$

5. Again let X: Type and let $P: X \to \text{Type}$ be a dependent type over X. Given x, y: X, some $\alpha : x \equiv y$ and elements p: Px and q: Py, we can define a type of "dependent equalities between p and q over α " which we will write

$$p \equiv q \left[P \downarrow \alpha \right] : \mathsf{Type}$$

The definition is by induction on α : when α is reflexivity the elements p and q have the same type and we can simply define

$$p \equiv q \left[P \downarrow \mathsf{refl} \right] := p \equiv q$$

(a) Show that

$$p \equiv q \left[P \downarrow \alpha \right] \simeq q \equiv \text{transport } P \alpha p$$

- (b) Give a second characterization of equalities in a \sum type using PathOver.
- 6. Suppose we have two types A, B : Type and an equivalence $e : A \simeq B$. Write ua for inverse of the map $A \equiv B \rightarrow A \simeq B$ asserted by the univalence axiom. Show that

transport $(\lambda X.X)$ (ua e) : $A \to B$

is given by simply applying the equivalence e.