
Eilenberg-MacLane Spaces
in Homotopy Type Theory

Daniel R. Licata ∗

Wesleyan University
dlicata@wesleyan.edu

Eric Finster
Inria Paris Rocquencourt
ericfinster@gmail.com

Abstract
Homotopy type theory is an extension of Martin-Löf type theory
with principles inspired by category theory and homotopy theory.
With these extensions, type theory can be used to construct proofs
of homotopy-theoretic theorems, in a way that is very amenable
to computer-checked proofs in proof assistants such as Coq and
Agda. In this paper, we give a computer-checked construction of
Eilenberg-MacLane spaces. For an abelian group G, an Eilenberg-
MacLane space K(G,n) is a space (type) whose nth homotopy
group is G, and whose homotopy groups are trivial otherwise.
These spaces are a basic tool in algebraic topology; for example,
they can be used to build spaces with specified homotopy groups,
and to define the notion of cohomology with coefficients in G.
Their construction in type theory is an illustrative example, which
ties together many of the constructions and methods that have been
used in homotopy type theory so far.

Categories and Subject Descriptors F.3.3 [Logics and mean-
ings of programs]: Studies of program constructs—Type structure;
F.4.1 [Mathematical logic and formal languages]: Mathematical
logic—Lambda calculus and related systems

General Terms Theory

Keywords type theory, dependent types, homotopy type theory

1. Introduction
Homotopy type theory is an extension of Martin-Löf type theory
with principles inspired by category theory and homotopy the-
ory [2, 7–9, 13, 15, 22–24], such as higher inductive types [16, 17,
19] and Voevodsky’s univalence axiom [10, 23]. This paper is part
of a line of work on using homotopy type theory to do synthetic
homotopy theory, where homotopy-theoretic concepts are modeled

∗ This research was sponsored in part by the National Science Founda-
tion under grant number DMS-1128155 and by the Institute for Advanced
Study’s Oswald Veblen fund. The views and conclusions contained in this
document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603153

using the homotopy structure of types, and type theory is used to
investigate them—type theory is used as a logic of homotopy the-
ory. In homotopy theory, one studies topological spaces by way of
their points, paths (between points), homotopies (paths or continu-
ous deformations between paths), homotopies between homotopies
(paths between paths between paths), and so on. In type theory, a
space corresponds to a type A. Points of a space correspond to el-
ements a,b : A. Paths in a space are modeled by elements of the
identity type (propositional equality), which we notate p : a =A b.
Homotopies between paths p and q correspond to elements of the
iterated identity type p =a=Ab q. The rules for the identity type al-
low one to define the operations on paths that are considered in
homotopy theory. These include identity paths ida : a = a (reflexiv-
ity of equality), inverse paths ! p : b = a when p : a = b (symmetry
of equality), and composition of paths q◦ p : a = c when p : a = b
and q : b = c (transitivity of equality)1, as well as homotopies re-
lating these operations (for example, id ◦ p = p), and homotopies
relating these homotopies, etc.

One of the basic questions in algebraic topology is calculating
the homotopy groups of a space. Given a space X with a distin-
guished point x0, the fundamental group of X at the point x0 (de-
noted π1(X ,x0) or just π1(X) when x0 is clear from context) is
the group of loops at x0 up to homotopy, with composition as the
group operation. This fundamental group is the first in a sequence
of homotopy groups, which provide higher-dimensional informa-
tion about a space: the homotopy groups πn(X ,x0) “count” the n-
dimensional loops in X up to homotopy. Calculating a homotopy
group πn(X) is to construct a group isomorphism between πn(X)
and an explicit description of a group, such as Z or Z mod k.

Homotopy groups can be expressed in type theory by iterating
the identity type. To a first approximation, π2(X ,x0) is the group
of homotopies between idx0 and itself, π3(X ,x0) is the group of
homotopies between ididx0

and itself, and so on. However, each
homotopy group πn(X) focuses attention on the paths at level
exactly n, while the higher identity types preserve information at
level n and above—for example, the type x0 = x0 is a full space
of loops at x0, which may itself have non-trivial higher homotopy
groups. Thus, to define the homotopy groups, it is necessary to
“kill” the higher structure of a type. This can be accomplished by
using the the truncation modality [21, Chapter 7]—given a type
A, the type ||A||n is intuitively the “best approximation of A as
an n-type,” where an n-type has trivial homotopy groups above
dimension n. For example, taking n = 0, the type ||A||0 is the
best approximation to A which behaves like a set, in the sense
that any two paths p,q : x =A y are themselves related by a path.
Truncations can be constructed using higher inductive types, a

1 To match the Agda library used for our formalizations, we write path
composition in function-composition order; this is different than in the
Homotopy Type Theory book [21].

general mechanism that can also be used to define basic spaces such
as the spheres. Thus, using tools such as identity types and higher
inductives, one can investigate homotopy groups in type theory.

Licata and Shulman [14] present a first example of synthetic ho-
motopy theory, calculating the fundamental group of the circle (i.e.
counting the number of different loops on the circle S1, considered
up to homotopy, or continuous deformation—for example, going
around the circle once clockwise and then again counter-clockwise
can be deformed to the constant path). The fundamental group of
the circle is isomorphic to Z, the additive group on the integers:
up to homotopy, there is the loop that stands still (0), goes around
counterclockwise n times (+n), or goes around clockwise n times
(−n). Licata and Brunerie [12] present a second example, calcu-
lating πn(Sn), the nth homotopy group of the n-dimensional sphere
Sn, which is also Z. This is proved by induction on n, showing that
there are as many n-dimensional loops on the n-sphere as there are
n+1-dimensional loops on the n+1-sphere; e.g. there are as many
paths on the circle as there are two-dimensional homotopies on
the surface of the sphere. Many other examples of synthetic homo-
topy theory are described in the Homotopy Type Theory book [21].
Moreover, synthetic homotopy theory has proved very amenable to
formalization in proof assistants, and many of these theorems have
been mechanized in Agda [18] and Coq [6].

1.1 Eilenberg-MacLane spaces
In this paper, we describe a a new example of synthetic homotopy
theory, a construction of Eilenberg-MacLane spaces (EM-spaces).
For an abelian group G, the EM-space K(G,n) is a space whose nth

homotopy group is G, and whose other homotopy groups are the
trivial (1-element) group. EM-spaces are a useful tool in algebraic
topology because they can be used to build other spaces with
specified homotopy groups. For example, given abelian groups G
and H, a space with π1 equal to G and π2 equal to H can be built
by taking the product K(G,1)×K(H,2), because

π1(K(G,1)×K(H,2))
= π1(K(G,1))×π1(K(H,2)) property of ×
= G×1 definition of EM-space
= G

and similarly for π2(K(G,1)×K(H,2)) = H. Not all homotopy-
classes of spaces can be built out of simple products of EM-spaces,
but in classical algebraic topology any space can be built as a
Postnikov tower, which is a sequence of fibrations whose fibers
are EM-spaces. From this point of view, EM-spaces can be seen
as basic building blocks of spaces which are dual, in a sense, to the
cells found in a cell complex decomposition [25].

EM-spaces also enable a definition of cohomology. While most
of the results in homotopy type theory so far have concerned homo-
topy groups, it is well known in algebraic topology that the com-
putation of these groups quickly becomes extremely difficult, even
for the most simple spaces: for example, there is no known com-
plete description of the homotopy groups of the 2-sphere. As an
alternative, modern algebraic topology focuses much of its atten-
tion on cohomological type invariants. These invariants satisfy ad-
ditional properties rendering them more computable, yet still man-
age to capture important invariants of spaces. The construction of
EM-spaces given in this paper provides the first appearance of this
class of invariants in type theory. Given a type A, we define the nth

reduced integral cohomology group of A, denoted H̃n(A), by

H̃n(A) = ||A→ K(Z,n)||0
It follows from the calculations in this paper that we have

H̃n(Sk) =

{
0 k 6= n
Z k = n

which shows that, unlike the homotopy groups, the cohomology
groups of all spheres can be calculated explicitly.

More generally, we can use EM-spaces K(G,n) to define coho-
mology with coefficients in G, and this definition fits with a general
pattern found in the literature on stable homotopy theory. First, no-
tice that the collection of Eilenberg-MacLane spaces {K(G,n)}n>0
has an interesting property: one has an equivalence

K(G,n)'ΩK(G,n+1)

where Ω(A), the loop space of A, is defined to be paths a0 =A a0
for a specified base point a0 : A. By iterating this observation, we
find that for any k, there exists a space Y such that K(G,n) '
ΩkY (namely, we can take Y = K(G,n+ k)). A space X with this
property is known as an infinite loop space, and the hypothesized
space Y is called a k-fold delooping of X . An infinite loop space
together with a chosen collection of deloopings, one for each k, is
known as a spectrum and it turns out that every such object gives
rise to its own cohomological invariant of spaces [1]. Hence, the
spaces defined in this paper could be used to construct a spectrum,
namely that of ordinary cohomology with coefficients in G.

1.2 Overview of Results
In this paper, we give a definition of EM-spaces K(G,n) and prove
that they have the correct homotopy groups; we have formalized
this proof in Agda. For intuition, consider the special case K(Z,n):
we are looking to construct a space whose nth homotopy group is
Z and whose homotopy groups are trivial otherwise. The n-sphere
is a good starting point, because as mentioned above, πn(Sn) =
Z. Moreover, it turns out that πk(Sn) = 1 for k < n (e.g., any
1-dimensional path on the sphere can be contracted to a point,
because its inside is filled in). As hinted at above, however, it is not
the case that πk(Sn) = 1 for k > n—indeed, the spheres have highly
non-trivial higher homotopy groups. But by using the truncation
modality, we can “kill” these higher homotopy groups, which leads
us to define K(Z,n) by ||Sn||n.

To see how this generalizes, it is necessary to inspect the def-
inition of Sn. Given a type A, the suspension of A, written ΣA, is
a higher inductive type that generated by two points that are con-
nected by one path for each point in A.2 For example, the suspen-
sion of the circle (S1) is the sphere (S2):

Here a and b are points on the circle. N and S are the two new points
in the suspension; they are connected by a path merid(x) through
each point on the circle; the figure illustrates the paths through a
and b. The n-sphere Sn can be defined by iterating the suspension
of the circle

Sn = Σn−1(S1)

(e.g. S3 = ΣS2 = ΣΣS1), so the above definition of K(Z,n) is
||Σn−1(S1)||n.

To define K(G,n) in general, we can do an analogous construc-
tion: first, we define a space K(G,1) for any G directly as a higher

2 The notation ΣX is standard for suspensions; it is unrelated to the usual
type-theoretic notation Σx:A.B for dependent pair types.

inductive type. Then, we define

K(G,n) = ||Σn−1(K(G,1))||n
The main theorem is that this definition of K(G,n) has the correct
homotopy groups: πn(K(G,n)) = G and πk 6=n(K(G,n)) = 1.

This proof is interesting for several reasons: Like many syn-
thetic proofs, our proof applies not only to traditional models of
homotopy theory such as simplicial sets or topological spaces, but
to any model of homotopy type theory. Moreover, the proof is not
a transcription of a proof in classical algebraic topology, but makes
use of some novel type-theoretic methods and tools. It is not yet
clear how these type-theoretic proofs relate to proofs in other set-
tings for homotopy theory; we hope that a deeper understanding of
this issue will eventually be obtained. Another interesting aspect of
this proof is that it builds on existing constructions (such as trun-
cations and suspensions), results (such as Lumsdaine’s proof of the
Freudenthal suspension theorem [21]), and methods (such as the
encode-decode method [14, 21]). This suggests that these tools may
scale to larger proofs and formalizations. Moreover, work on the
computational interpretation of homotopy type theory [3, 4, 13, 20]
suggests that it has computational content, such as an algorithm for
reducing n-paths in K(G,n) to elements of G.

The main content of this paper is an “informalization” of Agda
proofs available at www.github.com/dlicata335/hott-agda,
in the style of the Homotopy Type Theory book [21]. We have
chosen this presentation in order to add to the growing body of
evidence that homotopy type theory allows for proofs suitable
both for people and for proof assistants, and to give a basis for
comparing informal and formal proofs of the same theorem. The
construction is conducted in homotopy type theory, by which we
mean Martin-Löf type theory extended with the univalence axiom
and higher inductive types; see [21] for details. Homotopy type
theory can be simulated in Agda by adding univalence as an axiom
and postulating individual higher inductive types (see [11]).

As a prerequisite, we encourage the reader to read either [14], or
Part I and Chapter 8 of [21]. These introduce the basic constructions
of homotopy type theory (such as transport, or path lifting, and ap,
a function’s action on paths), as well as the synthetic approach to
homotopy theory that is developed further in this paper. The level
of detail of the informal proofs is intended to be such that a reader
familiar with [21, Chapter 8] could easily fill in the missing details.

In Section 2, we review some preliminary definitions and re-
sults. In Section 3, we describe a construction of K(G,1) and a
proof that it has the correct homotopy groups. In Section 4, we
prove a lemma that will be used to show that K(G,2) has the cor-
rect homotopy groups. In Section 5, we use these two preliminary
results to construct K(G,n) for general n. We discuss the relation-
ship between the proof presented here and the Agda formalization
in Section 6.

2. Preliminaries
In this section, we review some basic definitions; these are dis-
cussed in [21] and are part of the Agda library that we use as a
basis for our formalization.

2.1 n-types and Truncations
One of the new ideas in homotopy type theory is that types can
be stratified into levels, depending on what level (if any) their
points, paths, paths-between-paths, etc. become trivial. For exam-
ple, a proposition is a type A for which you can prove Πx,y:A.x = y
(points are trivial); a set, or 0-type is a type A with a proof of
Πx,y:A.Πp,q:x = y.p = q (paths are trivial). In general, we say
that a type A is a -2-type (or is contractible) if Σx:A.Πy:A.x = y,
and that A is an n+1-type if Πx,y:A.n-type(x = y). See [21, Chap-
ter 3] for more details.

Given any type A, there is a type ||A||n, the n-truncation of A,
which is “the best approximation of A as an n-type. This type has a
constructor |− | : A→ ||A||n, and the recursion principle rule says
that to define a function f : ||A||n → C where C is an n-type, it
suffices to give a function b : A→C—and then f (|x|) = b(x). More
generally, the induction principle says that to define a function
f : Πx:||A||n.C(x) where C : ||A||n → n-type, it suffices to give
b : Πx:A.C(|x|)—with the same computation rule. Truncations can
be implemented by certain higher inductive types [21, Chapter 6.9],
so they need not be new a primitive ingredient, but it is conceptually
helpful to think of them as a new type constructor.

A dual notion to truncatedness is connectedness: an n-connected
type is trivial at and below dimension n. Connectedness can be
defined using truncation:
DEFINITION 2.1. [21, Definition 7.5.1] A type A is n-connected iff
||A||n is contractible.

The n-truncation kills everything above n, so if this is con-
tractible, then the original type was trivial at and below n. For
example, a type A is 0-connected when the set-truncation of A is
contractible—i.e. the set of points of the type has exactly one ele-
ment.

2.2 Groups
DEFINITION 2.2: GROUP. A group G is a tuple (dependent pair
type) consisting of an underlying set |G| of elements, together with
multiplication (x� y) and inverse (x−1) operations and a unit ele-
ment e, which satisfy associativity, inverse, and unit laws expressed
in terms of the identity type (e.g. Πx:|G|.x� e = |G|x). G is abelian
iff x� y = y� x for all x,y.

The important point is that a group has a set, rather than a
general type, of elements; because of this, the proofs of the group
laws are elements of a proposition, and therefore proof-irrelevant,
and these groups behave like groups in traditional foundations. To
obtain a useful generalization to a less truncated type of elements,
it is usually necessary to extend the definition of a group with
additional coherences on the proofs of the group laws, such as the
pentagon equation for different ways of reassociating x�y� z�w.
DEFINITION 2.3: GROUP HOMOMORPHISM. Given groups G and
H, a group homomorphism consists of a function f : |G| → |H|
together with proofs of f (eG) = eH and f (x�G y) = f (x)�H f (y).

By convention, we often write G for the underlying set |G|.

2.3 Homotopy groups
DEFINITION 2.4. [21, Definition 2.1.7] A pointed type is a pair
(A,a0) where a0 : A (i.e. the type of pointed types is ΣA:type.A).
We often refer to a pointed type (A,a0) by its underlying type A.
DEFINITION 2.5. [21, Definition 2.1.8] Given a pointed type
(A,a0), the loop space of A, written Ω(A,a0), is a pointed type
defined by Ω(A,a0) :≡ (a0 = a0, id) For positive n, the iterated
loop space Ωn(A,a0) is defined by

Ω1(A,a0) :≡Ω(A,a0)
Ωn+1(A,a0) :≡Ωn(Ω(A,a0))

Thus, the nth loop space is the type of loops at id...ida0
, and

gives information about the n-dimensional structure in A. The loop
spaces preserve information about levels above n, while the homo-
topy groups space focus on one dimension at a time:
DEFINITION 2.6. [21, Definition 8.0.1] Given a pointed type
(A,a0), the nth homotopy group πn(A,a0) is defined to be the set
||Ωn(A,a0)||0; path composition, inverses, and identity induce a
group structure.

2.4 Suspensions
In the introduction, we discussed the notion of suspension infor-
mally; formally, it is defined as follows:
DEFINITION 2.7. [21, Section 6.5] Given a type A, the suspension
of A, written ΣA, is a higher inductive type with constructors
N : ΣA and S : ΣA and merid : A→ N =ΣA S

The corresponding recursion principle says that one can define a
function f : ΣA→C by giving c1 : C and c2 : C and m : A→ c1 = c2.
The computation rules for f are that f (N)≡ c1 and f (S)≡ c2 and
ap f (merid(x)) = m(x). The induction principle says that one can
define a dependent function f : Πz:ΣA.C(z) by giving c1 : C(N)
and c2 : C(S) and m : Πx:A.transportC(merid(x),c1) = c2 with
analogous computation rules. When we regard ΣA as a pointed
type, the implicit base point is N.

3. K(G,1)
Let G be a group. In this section, we define a type K(G,1) such
that π1(K(G,1)) is G and πk(K(G,1)) is trivial otherwise. G does
not need to be abelian for K(G,1), though it is necessary to assume
that G is abelian for K(G,2) and above.

3.1 Definition of K(G,1)

DEFINITION 3.1: K(G,1). To define K(G,1), we use a higher
inductive 1-type with the following constructors:

K(G,1) : 1-type
base : K(G,1)
loop : G→ (base =K(G,1) base)
loop−ident : loop(e) = id
loop−comp : Πx,y:G. loop(x� y) = loop(y)◦ loop(x)

base is a point (element) of K(G,1). loop is a function that con-
structs a path from base to base for each element of G. loop−ident
says that the path constructed from the unit element is the identity
path, and loop−comp that the path constructed from a multiplica-
tion of elements is the composition of the corresponding paths.

By declaring K(G,1) to be a 1-type, we assert that, while it
may have non-trivial paths between points (like loop(x) for any
x), any two paths between paths are identified. By definition, a 1-
type has a set of paths, and therefore path equality is a proposition,
and therefore any two proofs of path equality are themselves equal.
Thus, the statement “K(G,1) is a 1-type” is equivalent to

Πx,y:K(G,1).Πp,q:x = y.Πr,s:p = q.r = s

For example, there are two proofs

r,s : loop(x� y� z) = loop(z)◦ loop(y)◦ loop(x)

where r is given by using loop−comp twice, and q is given by
using associativity of� and then using loop−comp twice. Because
K(G,1) is a 1-type, there is a path r = s. This is necessary for
K(G,1) to have the correct higher homotopy groups. [5] gives a
general reduction of n-truncated higher inductive types to ordinary
higher-inductive types. For K(G,1), this general construction is
equivalent to simply adding another higher inductive constructor
trunc with the above type expressing “K(G,1) is a 1-type”.

Recursion principle In general, the elimination rule for a higher
inductive type allows for defining a function by giving a point for
each point constructor, a path for each path constructor, etc. In
this case, the associated recursion principle says that, to define a
function f : K(G,1)→C for some other type C, it suffices to give

• a point c : C
• a family of loops l : G→ (c =C c)

• a path l(e) = id

• a path l(x� y) = l(y)◦ l(x)
• a proof that C is a 1-type

Then f satisfies the equations

f (base)≡ c
ap f (loop(x)) = l(x)

One could also give computation rules expressing how apap f

acts on loop−comp and loop−ident. However, the computation
rules for a constructor are an equality at one dimension higher
than the level of the constructor (e.g., the computation rule for the
path constructor loop(x) is a path between paths). loop−comp and
loop−ident are proofs of equality of paths, so these computation
rules would be paths between proofs of equality of paths, and
therefore follow from the fact that C is a 1-type. Thus, we do not
even need to state them.

The fact that the recursion principle requires C to be a 1-type is
an an instance of a general pattern, in which the elimination rule for
an n-truncated higher-inductive type allows one to define functions
only into other n-types. But considering our explicit definition of
K(G,1) being a 1-type by the extra constructor trunc above, in this
specific case it is easy to see that C being a 1-type is exactly what it
means for the trunc constructor to be preserved, because translating
the type of trunc to C is exactly the statement that C is a 1-type.

It is also helpful to note that the function l and the paths express-
ing how it acts on unit and multiplication can be packaged together
by observing that, for any 1-type C with point c : C, there is a group
Ω(C,c) whose underlying set is c = c, the type of loops at c, with
path identity, composition, and inverses as the group operations.
Then, to specify a function f , it suffices to give

• a proof that C is a 1-type
• a point c : C
• a group homomorphism from G to Ω(C,c)

Induction principle. There is also a corresponding dependent
elimination or induction principle, which says that to prove a family
C : K(G,1)→ 1-type, it suffices to give

• a point c : C(base)

• a family of paths p : Πx:G.transportC(loop(x),c) = c

such that p preserves identity and composition (see the formaliza-
tion for details).

3.2 Fundamental Group
Next, we prove
THEOREM 3.2. The group π1(K(G,1)) is isomorphic to G.

Proof. To define a group isomorphism, it suffices to give an
equivalence on the underlying types that preserves composi-
tion. First, we prove that the type π1(K(G,1)) is equivalent to
the type G. π1(K(G,1)) is defined to be ||Ω(K(G,1))||0 where
Ω(K(G,1)) is the type base =K(G,1) base. Because K(G,1) is a 1-
type, Ω(K(G,1)) is a 0-type by definition. Therefore ||Ω(K(G,1))||0
is equivalent to Ω(K(G,1)) because 0-truncating a type that is al-
ready 0-truncated has no effect [21, Corollary 7.3.7]. Thus, it suf-
fices to show that Ω(K(G,1))' G.

This is proved using the encode-decode method [14, 21]. We
have a constructor

loop : G→Ω(K(G,1))

so it suffices to define a function

G→Ω(K(G,1))

and show that these two maps are mutually inverse. To do so, we
first define a dependent type

Codes : K(G,1)→ type

such that the fiber over base, Codes(base), is equal to G. Then we
can define

encode : Πz:K(G,1).base = z→ Codes(z)
encodez(p) :≡ transportCodes(p,e)

The instance encodebase has type (base = base)→ Codes(base),
which is equal to Ω(K(G,1)) → G as desired; thus gives us a
candidate inverse to loop.

Thus, our remaining tasks are (1) defining Codes, and (2) prov-
ing that encode and loop are mutually inverse. Codes will be de-
fined by recursion on K(G,1), so we need to give a 1-type C along
with a point c : C and a group homomorphism from G to Ω(C,c).
We would like to take C to be type, but the universe of all types
is not a 1-type. However, the collection of all 0-types (sets) is a 1-
type [21, Theorem 7.1.11], so we can choose C to be set, the type of
all sets. Thus, we need to give a set S and a group homomorphism
from G to Ω(set,S). We clearly should take S to be the underly-
ing set of the group G, so that, by the equations of the elimination
rule, Codes(base) ≡ G. Fortunately, G is a set by the definition of
a group.

To complete the definition of Codes, we therefore need a group
homomorphism from G to Ω(set,G). This consists of a function
G → (G = G) which sends e to id and sends multiplication to
composition. By univalence, it suffices to give a function G →
(G ' G) that maps each element of G to an an equivalence. We
choose the function that sends x :G to the equivalence−�x, which
given y :G computes y� x; this has inverse −� x−1 by the group
laws. Using the group laws, one can also see that this sends e to
id (because multiplication by the unit is the identity function) and
multiplication to composition of paths (because of associativity), as
required. To summarize, this definition satisfies the following:

Codes : K(G,1)→ set
Codes(base)≡ G
transportCodes(loop(x),y) = y� x

The third line follows from the defining equation for apCodes(loop(x))
together with the computation rule for transporting along univa-
lence.

We now check that the two composites are the identity. First, for
encodebase ◦ loop, given x :G we have

encodebase(loop(x))
≡ transportCodes(loop(x),e) definition
= e� x transport for Codes
= x group law

In the other direction, we must check that for any p : Ω(K(G,1)),
loop◦ encodebase(p) = p. To do so, we generalize loop to a func-
tion decode

decode : Πz:K(G,1).Codes(z)→ base = z

which is defined by induction on z. In the case for base, it suffices
to give a function G→Ω(K(G,1)), so we use loop. Next, we must
give a family of paths

transportz.Codes(z)→base=z(loop(x), loop) = loop

for each x :G. By reducing transport in function and identity types
and using function extensionality, it suffices to show for all y :G
that

loop(transportCodes(loop(x),y))
= loop(y� x) by definition Codes
= loop(x)◦ loop(y) by loop−comp

The obligation to show that this family of paths preserves identity
and composition is immediate because we are eliminating into a
set, the path space of the 1-type K(G,1).

Having defined decode, we check that

Πz:K(G,1).Πp:base = z.decodez(encodez(p)) = p

Because we have generalized the problem, we can apply path in-
duction, and it suffices to check the case where z is base and p is
id. In this case, the problem reduces to showing that

loop(e) = id

which is proved by loop−ident. Instantiating this generalization to
base and reducing the type gives a function of type

Πp:base = base. loop(encodebase(p)) = p

as required.
Thus, we have established that loop and encodebase are mutu-

ally inverse, which gives an equivalence.
To see that this equivalence preserves composition, it is enough

to observe that the overall equivalence G' π1(K(G,1)) is a compo-
sition of G ' Ω(K(G,1)) and Ω(K(G,1)) = ||Ω(K(G,1))||0. The
map G→Ω(K(G,1)) is loop, which preserves composition by con-
struction. The map Ω(K(G,1))→ ||Ω(K(G,1))|| is the truncation
constructor |−|, which preserves identity and composition because
the identity and composition of ||K(G,1)||0 are by definition the
lifting of identity and composition in K(G,1) [21, Example 6.11.4].
Thus, the group G is isomorphic to the group K(G,1).

3.3 Higher homotopy groups
Because K(G,1) is a 1-type (by construction), πk(K(G,1)) = 1 for
all k > 1 [21, Theorem 8.3.1]. Intuitively, 1-types have no non-
trivial 2-cells or above, so their higher homotopy groups are trivial.
Thus, we have
COROLLARY 3.3. The type K(G,1) has π1(K(G,1)) = G and
πk(K(G,1)) trivial otherwise.

4. Suspension of a type with an h-structure
In this section, we prove a lemma that will be useful for construct-
ing K(G,2); it is essentially the proof that π2(K(G,2)) = G, in
more generality.

4.1 H-structures
DEFINITION 4.1. Given a pointed type (A,a0), a coherent h-
structure on (A,a0) consists of

• A multiplication operation � : A→ A→ A
• A left unitor unitl : Πa:A.a0�a = a
• A right unitor unitr : Πa:A.a�a0 = a
• A coherence unitcoh : unitl(a0) = unitr(a0)
• A proof that for every a :A, a�− is an equivalence.

A coherent h-structure equips A with a multiplication operation,
such that a0 is a unit for the multiplication (coherently, in the sense
that the left and right unitors agree on a0), and multiplication by
any element is an equivalence. The notion of h-structure is due to
Hopf. We often drop the word “coherent”, because we will only
consider coherent ones. For example:
LEMMA 4.2. If G is abelian, then there is an h-structure on
K(G,1).

Proof. Thinking of K(G,1) as a groupoid with one object and
an arrow for each g : G, the multiplication K(G,1)→ K(G,1)→
K(G,1) is a functor from the K(G,1) to K(G,1)K(G,1), which sends

the object to the identity functor, and each element z : G to a natural
transformation from the identity functor to itself. Such a natural
transformation is given by a single arrow of K(G,1), which we
take to be z; this is natural because G is abelian. In type theory,
this argument is rendered as follows: The multiplication is defined
by recursion on its first argument (note that the result is 1-type),
where the image of base is λ z.z, so for loop we must provide a
group homomorphism from G to Ω(K(G,1)→ K(G,1),λ z.z). On
elements, we need to map each element x :G to a path from the
identity function to itself; by function extensionality, it suffices to
give

Πz:K(G,1).z = z

This is defined by induction on z (the result is a path in a 1-type and
therefore still a 1-type), sending base to loop(x). To complete the
induction, we must check that

Πy:G.transportx.x=x(loop(y), loop(x)) = loop(x)

The calculation requires reducing the transport and applying func-
toriality of loop and the group laws, including commutativity. The
remaining conditions for the induction principle are trivial because
of the level of the type we are eliminating into. This completes the
definition of the homomorphism on elements. It can be proved that
it preserves identity and composition using K(G,1) induction, ap-
pealing to loop−ident and loop−comp.

To complete the definition of an h-structure, we must give left
and right unitors and show that multiplication by any element is
an equivalence. All of these are defined by K(G,1) induction, with
short calculations.

4.2 π2 of a Suspension
For the suspension type (Section 2), the merid constructor maps
A into the paths in the suspension ΣA. Thus, one might think that
it moves the homotopy groups up by one, shifting π1 to π2, etc.
However, the structure of ΣA is more complicated than that. For
example, we can construct K(G,1) for any group G, but π2 of
any type is abelian by the Eckmann-Hilton argument [21, Theorem
2.1.6], so π2(ΣK(G,1)) cannot always be equal to π1(K(G,1)) =
G. However, in certain special circumstances, the suspension does
shift π1 to π2. One such circumstance is as follows:
THEOREM 4.3. Let (A,a0) be a pointed, 0-connected, 1-type with
an h-structure. Then π2(ΣA,N) = π1(A,a0).

The idea is that A is like K(G,1) in the sense that only its paths
are non-trivial: being 0-connected means that its set of points is
trivial; being a 1-type means that its paths between paths (and
higher) are trivial. Moreover, it has an h-structure, which ensures
that its π1 is abelian. The theorem states that under these conditions,
the suspension lifts π1(A) to π2(ΣA).

For the remainder of this section, let (A,a0) be a pointed 0-
connected 1-type with an h-structure� on (A,a0). We call attention
to one lemma used in the proof of Theorem 4.3.
LEMMA 4.4. For all a,a′ : A,

|merid(a�a′)|=||Ω(ΣA)||1 |merid(a)◦! merid(a0)◦merid(a′)|

A priori, it is not obvious that the merid constructor preserves
the h-structure multiplication on A. This lemma says that it does, at
least under an appropriate truncation: merid of a multiplication is
the same as the composite going “down” along a′, “up” along the
distinguished base point a0 (which is the unit of the multiplication),
and then “down” along a. This holds when we consider these paths
in the 1-truncation of the loop space. This lemma arises naturally in
the proof below, but its proof requires a bit of cleverness. To prove
it, we use the following induction principle:

LEMMA 4.5. Suppose A is 0-connected with a0 : A, and that P :
A→ A→ 0-type. Then to define a function Πx,y:A.P(x,y), it suf-
fices to separately give

• f : Πy:A.P(a0,y)
• g : Πx:A.P(x,a0)
• such that they agree on a0 : f (a0) = g(a0).

This statement of the lemma is a special case of a principle for-
mulated in homotopy type theory by Lumsdaine (see [21, Lemma
8.6.2] for the proof), which expresses the connectivity of the map
from the wedge into the product. It says that we can prove some-
thing about the whole product A×A by separately considering each
“axis” where x and y are fixed to be a0.

Proof of Lemma 4.4. We apply Lemma 4.5 to A and a0, with
P(a,a′) defined by

|merid(a�a′)|=||Ω(ΣA)||1 |merid(a)◦ (! merid(a0)◦merid(a′))|
Thus, it suffices to show first that

|merid(a0�a)|= |merid(a0)◦ (! merid(a0)◦merid(a))|
which holds by the left unit law for a0�− and an inverse/unit law
for paths. Second, we must show that

|merid(a�a0)|= |merid(a)◦ (! merid(a0)◦merid(a0))|
which holds by the right inverse law for −� a0 and a different
inverse/unit law for paths. Finally, we must show that the above
two proofs agree when they are each used to prove

|merid(a0�a0)|= |merid(a0)◦ (! merid(a0)◦merid(a0))|
This is where we use the coherence condition imposed on h-
structures; we also use path induction to show that the two in-
verse/unit laws for paths agree.

With this lemma in hand, we turn to the proof of the main
theorem:

Proof of Theorem 4.3. Overall, we calculate as follows:

π2(ΣA,N)
= ||Ω(Ω(ΣA,N), id)||0 definition of π2,Ω2
= Ω(||Ω(ΣA,N)||1, |id|) [21, Lemma 7.3.12]
= Ω(A,a0) main lemma
= π1(A,a0) A is a 1-type, so Ω(A,a0) is a set

The fourth line uses the fact that truncations and loop spaces can
be commuted, incrementing the truncation level by one as it moves
inside: the n-truncation of paths in A are the same as the paths in
the n+1-truncation of A (which kills all cells at one level higher).
The main lemma, used in the next line, is that

||Ω(ΣA,N)||1 ' A

and that this equivalence sends a0 to |id|.
This equivalence is constructed by another application of the

encode-decode method. The technique is a small elaboration of the
one used above, where we characterized a loop space by proving
a statement of the form Ω(X ,x0) = Y . In the present theorem, it
is not possible to characterize the entire loop space (which would
imply a characterization of all higher homotopy groups), but we
can get partial information by characterizing a truncation, proving
a statement of the form |Ω(X ,x0)|1 = Y .

Let
P : ΣA→ type
P(x) := ||N =ΣA x||1

Our goal is to construct another fibration

Codes : ΣA→ 1-type

such that Codes(N)≡A, and to use it to prove that ||Ω(Σ(A),N)||1 =
A by proving that P(N) = Codes(N).

Let � be the multiplication operation of the h-structure on
(A,a0). We define Codes by suspension recursion, with

Codes(N) :≡ A
Codes(S) :≡ A
apCodes(merid(x)) := ua(x�−)

That is, the fiber over both N and S is A, and the merid(x) path is
sent to multiplication by x, which is an equivalence by the definition
of h-structure, and therefore determines a path by univalence. Since
A is a 1-type, Codes actually defines a fibration of 1-types.3 A short
calculation shows that this definition satisfies

transportCodes(merid(a),a′) = a�a′
transportCodes(!(merid(a0)),a) = a

essentially because transporting at a applies the equivalence a�−
that we put into the definition of Codes (and, in the second case,
a0�− is the identity function, so its inverse is also the identity).

Because Codes is a 1-type, we can define

encode : Πx:ΣA.P(x)→ Codes(x)

by truncation recursion, where p : N= x is sent to transportCodes(p,a0).
In the other direction, observe that we have a map

decode′ : A→ ||N = N||1
decode′(a) = |merid(a0)◦merid(a)|

That is, given an a, to get a loop at N in the suspension, we can go
down along a and back up along the base point a0.

Using these two equations, it is easy to check the first compos-
ite, which shows that

encodeN(decode′(a)) = a

The calculation is as follows:
encode(decode′(a))

= encode(|! merid(a0)◦merid(a)|)
= transportCodes((! merid(a0)◦merid(a)),a0)
= transportCodes(! merid(a0),transportCodes(merid(a),a0))
= transportCodes(! merid(a0),a�a0)
= transportCodes(! merid(a0),a)
= a

For the other composite, we first generalize decode′ to

decode : Πx:ΣA.Codes(x)→ P(x)

This is defined by suspension induction. In the case for N, we need
a function A→ ||N = N||1, for which we choose decode′. In the
case for S, we need a function A→ ||N = S||1, which we define by

a 7→ |merid(a)|
(which is similar to decode′, but it does not come “back up” along
merid(a0)). To complete the definition, we need, to give a case
for merid(a), which is a path showing that the image of north
(decode′) and the image of south (a 7→ |merid(a)|) are equal up
to merid(a):

transportx.Codes(x)→P(x)(merid(a),decode′) = (a 7→ |merid(a)|)

Applying some reductions for transport at function, path, and using
the above reduction rule for transportCodes(merid(a),−) shows
that it suffices to give, for all a′, a path

|merid(a)◦! merid(a0)◦merid(a′)|= |merid(a�a′)|

3 We elide the proofs that A is a 1-type in the N and S cases and the path
between them (which is trivial because being an n-type is a proposition, so a
path between two n-types (A,nA) and (B,nB) is the same as a path between
A and B).

This is exactly Lemma 4.4.
Now that we have defined decode, we can prove that

Πx:ΣA.Πp:P(x).decodex(encodex(p)) = p

Because the conclusion is a path in a 1-type, it is a 1-type, we can
do truncation induction on p, to get a path p′ : N = x. By path
induction, it suffices to show

decodeN(encodeN(id)) = id

After expanding the definitions, this follows from a simple path
manipulation.

By construction, we have that decode(N) ≡ decode′, so in
particular we have that

Πp:P(N).decode′(encodeN(p)) = p

which complete the proof that decode′ and encodeN are mutually
inverse, proving the main lemma that ||Ω(ΣA,N)||1 ' A.

Finally, to show that this equivalence is a group isomorphism,
we must check that the equivalence of types π2(ΣA,N) = π1(A,a0)
that we have constructed preserves composition. This can be proved
by inspecting the above equivalence. Modulo shuffling truncations
around, the main step of the equivalence is to apply the main
lemma inside of Ω(−). Thus, the main step of the functions that
this equivalence constructs are given by ap(f) for some f , and ap
always preserves composition [21, Lemma 2.2.2].

5. K(G,n)
Next, we construct K(G,n) for arbitrary n. As discussed in the in-
troduction, the idea for constructing K(G,n) is to suspend K(G,1)
n− 1 times and then truncate. First, we prove a lemma about iter-
ated suspensions.

5.1 Iterated Suspensions
DEFINITION 5.1. Suppose a pointed type (A,a0) that is 0-connected.
Define Σn(A) by induction on A, with

Σ0(A) :≡ A
Σn+1(A) :≡Σ(Σn(A))

Observe that Σn(A) is pointed, with a0 the point of Σ0(A) and N
the point of Σn+1(A). Additionally, in general, if C is n-connected,
then ΣC is n+ 1-connected [21, 8.2.1]; iterating this fact starting
at 0 gives that Σn(A) is n-connected, because A is 0-connected by
assumption.

In the previous section, we discussed how the suspension does
not always shift the homotopy group up by one, and investigated
one circumstance in which it does. The Freudenthal suspension
theorem [25] is a general result that gives additional circumstances
in which the suspension preserves the homotopy groups of a space,
depending on the connectivity of the space being suspended. We
use the following corollary:
COROLLARY 5.2. If A is n-connected and pointed, with n≥ 0, then

||A||2n = ||Ω(ΣA,N)||2n

Lumsdaine’s proof appears as [21, Corollary 8.6.4]. From the sus-
pension theorem, we can deduce a corollary about the homotopy
groups of iterated suspensions:
LEMMA 5.3. Suppose A is n-connected and pointed, with n ≥ 0,
and let n,k be positive numbers such that k ≤ 2n−2. Then

πk+1(Σ
n(A)) = πk(Σ

n−1(A))

Proof. The proof is a simple calculation; we elide the base points
to make it easier to read:

πk+1(Σ
n(A))

= ||Ωk(Ω(Σn(A)))||0 definition π , Ωk+1

= Ωk(||Ω(Σn(A))||k) [21, Corollary 7.3.14]
= Ωk(||Ω(Σ(Σn−1(A)))||k) definition Σn(A), n is positive
= Ωk(||Σn−1(A)||k) Corollary 5.2
= ||Ωk(Σ

n−1(A))||0 [21, Corollary 7.3.14]
= πk(Σ

n−1(A)) definition π

Aside from expanding definitions, the only lemmas neces-
sary are that ||Ωk(A)||n = Ωk(||A||n+k), which is [21, Corollary
7.3.14], and the corollary of the Freudenthal suspension theorem
described above. We apply Corollary 5.2 with n = 0, observing that
A is 0-connected by assumption, so Σn−1(A) is n− 1-connected
as mentioned above. Thus, the suspension theorem tells us that
||Ω(Σ(Σn(A)))||2n−2 = ||Σn−1(A)||2n−2. Because k ≤ 2n− 2 by
assumption, we also have

||Ω(Σ(Σn(A)))||k = ||Σn−1(A)||k

because we can apply || − ||k to both sides and use the fact that
||||A||n||m = ||A||min(n,m) [21, Lemma 7.3.15], and the min in this
case is k.

To see that this equivalence preserves composition, it is enough
to observe once again that, modulo shuffling truncations, the main
step is applying an equivalence inside Ωk, and is therefore an
instance of ap, which always preserves composition.

5.2 Constructing K(G,n)

Finally, we tie all of these results together to construct K(G,n).
Let (A,a0) be a pointed, 0-connected 1-type with an h-structure,

as in Section 4. The idea is that A is like K(G,1), so we use the
following indexing:

K′(A,n) :≡ ||Σn−1(A)||n

Observe that K′(A,n) is (n− 1)-connected, because Σn−1(A) is
(n−1)-connected, and truncation preserves connectedness (adding
paths can only help). K′(A,n) is also pointed, with the base point
being |b|, where b is the base point of Σn−1(A).
THEOREM 5.4. For all positive numbers n and k, πn(K′(A,n)) =
π1(A) and πk(K′(n,A)) is trivial otherwise.

Proof. For k < n (below the diagonal), πk is trivial because K′(n,A)
is n−1 connected, and πk(A) of an n−1-connected space is trivial
whenever k ≤ n−1 [21, Lemma 8.3.2].

For k > n (above the diagonal), K′(A,n) is defined to be an n-
type, so πk is trivial by [21, Lemma 8.5.1].

For k = n (on the diagonal), we reason as follows. If n = 1, then
we need to show that

π1(K′(A,1)) = π1(A)

By definition π1(K′(A,1)) = ||Ω(||A||1)||0 and π1(A) = ||Ω(A)||0.
These are equal because A was assumed to be a 1-type, so ||A||1 =
A [21, Corollary 7.3.7].

If n = 2, then we need to show that

π2(K′(A,2)) = π1(A)

We calculate as follows:
π2(K′(A,2))

= ||Ω2(||ΣA||2)||0 definition
= ||||Ω2(ΣA)||0||0 [21, Corollary 7.3.14]
= ||Ω2(ΣA)||0 [21, Corollary 7.3.7]
= π2(ΣA) definition
= π1(A) Theorem 4.3

In the final line, observe that A satisfies the assumptions of Theo-
rem 4.3 by assumption.

Finally, if n > 2, then we must show that πn(K′(A,n)) = π1(A).
By the inductive hypothesis πn−1(K′(A,n−1)) = π1(A), so it suf-
fices to show that

πn+1(K′(A,n+1)) = πn(K′(A,n))

This is almost just Lemma 5.3, but we need to deal with the outer
truncations in the definition of K′(A,n). First, we can show that for
any l, πl is unchanged by this extra truncation:

πl(K′(A, l))
= ||Ωl(||Σl−1(A)||l)||0
= Ωl(||||Σl−1(A)||l ||l)
= Ωl(||Σl(A)||l)
= πl(Σ

l−1(A))

The proof uses [21, Corollary 7.3.14] and [21, Corollary 7.3.7].
Using this fact twice, we can calculate as follows:

πn+1(K′(A,n+1))
= πn+1(Σ

n(A))
= πn(Σ

n−1(A)) Lemma 5.3
= πn(K′(A,n))

We appeal to Lemma 5.3 with n= k; the condition that k≤ 2n−2 is
satisfied whenever n is at least 2, which is the assumption here. The
fact that we cannot appeal to stability when n= 2, is why we needed
to prove Lemma 4.3 separately; this analogous to the fact that the
Fruedenthal suspension theorem implies that π3(S3) = π2(S2) but
not that π2(S2) = π1(S1).

One can calculate that this equivalence preserves composition,
using the fact that Lemma 5.3 and Lemma 4.3 do.

Finally, given an abelian group G, we can define

K(G,n) :≡ K′(K(G,1),n)

and prove
COROLLARY 5.5. If G is an abelian group, then πn(K(G,n)) = G
and πk(K(G,n)) is trivial otherwise.

Proof. A simple induction shows that K(G,1) is 0-connected. It is a
1-type by construction. By Lemma 4.2, it has an h-structure. There-
fore, by the above result applied with A as K(G,1), we have that
πn(K(G,n)) = πn(K′(K(G,1),n)) = π1(K(G,1)), which is equal
to G by Theorem 3.2. By the above result with A = K(G,1),
πk(K(G,n)) = πk(K′(K(G,1),n)) = 1 otherwise. This preserves
composition because Theorem 5.4 and Corollary 3.3 do. This com-
pletes the construction of K(G,n).

6. Formalization
An Agda formalization of these results is available at http://
www.github.com/dlicata335/hott-agda, starting in the file
homotopy/KGn.agda. The formalization of the results specific to
K(G,n), including a proof of the corollary of the Freudenthal sus-
pension theorem that we used (Corollary 5.2), is about 1000 lines

of code. Without Freudenthal, it is about 750 lines of code, which
is pleasingly close to the TeX source for the body of this paper,
which is about 800 lines of code. This is certainly an apples-to-
oranges comparison, since the paper includes much more explana-
tion, while the Agda proof includes all details. But it at least sug-
gests that the overhead of formalizing homotopy theory in this style
is low relative to giving an informal exposition. The proof builds
on a significant library of around 10,000 lines of code, which in-
cludes the lemmas that we cited from the Homotopy Type Theory
book [21]. The fact that the proofs are small relative to the library
(much of which was written before this particular formalization) is
encouraging, because it suggests that the library contains relevant
and reusable results.

The presentation in this paper was derived from the formaliza-
tion, and, for the most part, follows it closely. In this paper, we
have provided citations to the Homotopy Type Theory book [21]
for theorems that appear there. The formalization, much of which
was written before/independently of the book, sometimes has dif-
ferent proofs of these theorems than the book does. In the infor-
mal presentation, we have elided some details, and have adopted
some abuses of notation. For example, we sometimes write A :
n-type, when the real element of that type is a pair (A, p) where
p : n-type(A), and we sometimes refer to a pointed type (A,a0)
by its underlying type A. Some of these would be supported by the
canonical structures and type class mechanism of Coq, which Agda
does not provide. We also abbreviate some calculations, e.g. rely-
ing on the reader to apply “reduction” rules involving transport
in particular fibrations. These steps are propositional equalities in
Agda, but they have a computational flavor, and might be computa-
tion rules in future proof assistants. Finally, the index arithmetic for
things like πn is messy in the current version of our library, because
there are different types for positive numbers, natural numbers, and
numbers ≥ −2; it would be helpful to engineer a better integer li-
brary that could support all these types.

The one aspect of the proof that we have not yet formalized is
the proofs that the equivalences constructed preserve composition.
In Agda, this would be a rather tedious proof, because the equiva-
lences are constructed using many non-computational steps involv-
ing univalence and higher-inductives. In a future proof assistant for
homotopy type theory with good computational properties, the cal-
culation should be much simpler, because normalizing the equiva-
lences should do much of the work. Agda code for the part of the
proof not done by normalization would be comparable in size to
the three paragraphs we have spent on this aspect of the proof here.

7. Conclusion
In this paper, we have described a construction of Eilenberg-
MacLane spaces K(G,n), illustrating many tools and techniques
of using homotopy type theory for computer-checked proofs in
homotopy theory. In future work, we plan to build on this formal-
ization to explore the applications mentioned in the introduction.
In particular, many computational techniques exist in the literature
for computing cohomology groups of spaces and it is an interesting
question to see if these can similarly be implemented in type theory.
Another piece of future work would be to investigate whether work
on the computational interpretation of homotopy type theory [4]
can be used to simplify the proofs given here.

Acknowledgments
We thank the participants in the Institute for Advanced Study spe-
cial year on univalent foundations, especially Peter LeFanu Lums-
daine and Guillaume Brunerie and Mike Shulman, for helpful dis-
cussions about this work.

References
[1] J. F. Adams. Stable homotopy and generalised homology. University

of Chicago Press, Chicago, Ill., 1974. Chicago Lectures in Mathemat-
ics.

[2] S. Awodey and M. Warren. Homotopy theoretic models of identity
types. Mathematical Proceedings of the Cambridge Philosophical
Society, 2009.

[3] B. Barras, T. Coquand, and S. Huber. A generalization of Takeuti-
Gandy interpretations. To appear in Mathematical Structures in Com-
puter Science, 2013.

[4] M. Bezem, T. Coquand, and S. Huber. A model of type theory in
cubical sets. Preprint, September 2013.

[5] G. Brunerie. Truncations and truncated higher inductive
types. http://homotopytypetheory.org/2012/09/16/
truncations-and-truncated-higher-inductive-types/,
2012.

[6] Coq Development Team. The Coq Proof Assistant Reference Manual,
version 8.2. INRIA, 2009. Available from http://coq.inria.fr/.

[7] N. Gambino and R. Garner. The identity type weak factorisation
system. Theoretical Computer Science, 409(3):94–109, 2008.

[8] R. Garner. Two-dimensional models of type theory. Mathematical.
Structures in Computer Science, 19(4):687–736, 2009.

[9] M. Hofmann and T. Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory. Oxford Uni-
versity Press, 1998.

[10] C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The simplicial
model of univalent foundations. arXiv:1211.2851, 2012.

[11] D. R. Licata. Running circles around (in)
your proof assistant; or, quotients that compute.
http://homotopytypetheory.org/2011/04/23/
running-circles-around-in-your-proof-assistant/,
April 2011.

[12] D. R. Licata and G. Brunerie. πn(sn) in homotopy type theory. In
Certified Programs and Proofs, 2013.

[13] D. R. Licata and R. Harper. Canonicity for 2-dimensional type the-
ory. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2012.

[14] D. R. Licata and M. Shulman. Calculating the fundamental group of
the cirlce in homotopy type theory. In IEEE Symposium on Logic in
Computer Science, 2013.

[15] P. L. Lumsdaine. Weak ω-categories from intensional type theory. In
International Conference on Typed Lambda Calculi and Applications,
2009.

[16] P. L. Lumsdaine. Higher inductive types: a tour of the
menagerie. http://homotopytypetheory.org/2011/04/
24/higher-inductive-types-a-tour-of-the-menagerie/,
April 2011.

[17] P. L. Lumsdaine and M. Shulman. Higher inductive types. In prepara-
tion, 2013.

[18] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[19] M. Shulman. Homotopy type theory VI: higher inductive
types. http://golem.ph.utexas.edu/category/2011/04/
homotopy_type_theory_vi.html, April 2011.

[20] M. Shulman. Univalence for inverse diagrams and homotopy canon-
icity. To appear in Mathematical Structures in Computer Science;
arXiv:1203.3253, 2013.

[21] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations Of Mathematics. Institute for Advanced Study, 2013.
Available from homotopytypetheory.org/book.

[22] B. van den Berg and R. Garner. Types are weak ω-groupoids. Pro-
ceedings of the London Mathematical Society, 102(2):370–394, 2011.

[23] V. Voevodsky. Univalent foundations of mathematics. Invited talk at
WoLLIC 2011 18th Workshop on Logic, Language, Information and
Computation, 2011.

[24] M. A. Warren. Homotopy theoretic aspects of constructive type theory.
PhD thesis, Carnegie Mellon University, 2008.

[25] G. W. Whitehead. Elements of homotopy theory, volume 61 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1978. ISBN
0-387-90336-4.

