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1. We start by defining a functor ® from 8et®” /F to Set (f F) . On objects, ® takes a natural
transformation a: G — F to the presheaf G, on [ F defined by on objects by

Gale.r) = {y € G(0) | acly) = 2} € G(0).

On morphisms G,, is defined as the restriction of G, which is well-defined, because if we
have f: ¢ — d in € with F(f)(y) = = and z € G(d) such that aq(z) = y, then by naturality,
ac(G(f)(2)) = F(f)(aa(2)) = F(f)(y) = z, as required. And G,, is a functor, because G is.

On morphisms @ takes a natural transformation 8: G — G’ making a diagram

@

N L

commute and sends it to the restriction of 8. This is well-defined, for if we have z € F(c)
and y € G(c) with a.(y) = z, then o (8:(y)) = a.(y) = x by the commutativity of the
diagram.

We proceed by showing that ® is full. Note that any natural transformation 5: Go — G,
can be seen as a natural transformation from G to G’, because y € G(c) if and only if y €
Galc, ac(y)), and similarly for G’ of course. Moreover, if y € G(c), then o, (8:(y)) = a.(y),
so A is in fact an arrow in 8et®” /F.

Further, ® is faithful, for if we have 8 and « as above such that ®(3) = ®(v), then for every
Yy e G(C) we have ﬂc(y) = (D(ﬂ)(c,ac(y))(y) = CI)(P)/)(c,ozc(y))(y) = ’Yc(y)7 proving that B =7.
Finally, we show that ® is (split) essentially surjective on objects. Suppose that G is a
presheaf on [ F. We construct a presheaf G on € over F' such that ®(G) = G. On objects,
we define G(c) == |, ¢ p(.) G(c, ), where | | denotes the disjoint union of sets. For an arrow

frc— din €, we define G(f): G(d) — G(c) by (y,2) — (F(f)(y),G(f)(2)), which is
functorial, because F' and G are functors.

We equip G with a natural transformation 7 which is simply given by the first projection, i.e.
7o(x,y) = x for all x € F(c) and y € G(c,z). This makes G into an element of 8¢t /F.

It remains to prove that ®(G) = G, but this follows readily, as we calculate that for every
(c,z) € [ F, we have

(@(@)(e,z) ={(2,y) € Glo) | 2" = 2} ={(2,y) | y € G(c,2)} = G(c, 2).

We conclude that ® is an equivalence, as desired.



2. We start by showing that F is a cocone for the diagram [ F I @ Y 8et®”. We need
to define for each (¢,z) € [ F a natural transformation ¢,: y(c) — F such that for every

f:(c,z) = (d,y) in [ F, we have ¢, o y(f) = ¢,. We define (¢,),(g) = F(g)(z) for an
arbitrary object d of €. Note that ¢, is a natural transformation by functoriality of F.
Moreover, ¢, o y(f) = ¢, holds when F(f)(y) = x, again by functoriality of F. Thus, F is
a cocone for the diagram.

To see that F' is the initial cocone, suppose that (G,1) is another cocone, i.e. for every
(¢,x) € [ F, we have a natural transformation ¢, : y(c) = G such that for every f: (c,z) —
(d,y) in [ F, we have ¢, oy(f) = 1. We show that there is a unique natural transformation
U: F — G such that ¥ o ¢, = 1), for every x € F(c).

We define U,.: F(c) = G(c) by x +— ¢, (id¢). This is a natural transformation, because in
the diagram

F(d) —2 G(d)
F(f)l lG(f)
F(e) — G(c)

the clockwise composition yields G(f)(¢y(idq)) = ¥, (f) by naturality of i, while the
anticlockwise composition reads 1 p(s)(y) (ide) = 1, (f) because ¥, o y(f) = 1.

Next, we verify that ¥ o ¢, = 1, for every (c,z) € [ F. If f: ¢ — ¢ is an arrow in C, then

(Vo oe)a(f) =Y (F(f)(x)) (by definition of ¢,)
= Yr(f) () (ide) (by definition of W)
:1/)gg(f) (Since ony(f) :'(/JF(f)(x))y
as claimed.

Finally, we claim that W is the unique such natural transformation. For suppose that © is
another such natural transformation, then for every x € F(c), we have

Oc(r) = Oc(F(id.)(x))

— 00 ((2),(idc)) (by definition of ;)
= '(/):v (idC) (Since ©o ¢m = '(/)w)
=U,.(x) (by definition of ¥),

showing that © = ¥. Thus ¥ is unique and F is colimit of the diagram [ F e Y sett.

3. We describe how G acts on a natural transformation a: F — F’. By the universal property
of the colimit, it suffices to find maps G(c) — G(F’) = colim(G o7 p) for every object ¢ of €.
But for such ¢ and = € G(c¢) we have a.(z) € F’(c) determining an element of colim(G omp/)
through the colimit inclusions. Moreover, this assignment is clearly functorial. Thus, G is
indeed a functor.

A right adjoint to G is given by the following data: for every object e of €, a presheaf R,
on € together with a map e.: G(R.) — e in € such that for every map h: G(F) — e in €,
there exists a unique natural transformation o: F' — R, making the diagram

G‘(a)\%/ X (1)



commute. We define R.: C°? — 8et on objects by R.(c) = {f:d = ¢ | G(d) = e}. We
define R.(f) for a morphism f to be postcomposition with f in €, which is obviously
functorial.

We define .: colim(G o g, ) — e to be the map induced by taking G(f) at f: d — ¢ with
G(d) =e.

Finally, if h: G(F ) — e, then h is given by a collection of maps h,: G(c) — e indexed by
(¢,x) € [ F such that

hy o G(f) = hr(s) ) (1)

for y € cod(f). Hence, we can define a: F' — R, as the natural transformation given by
ac(z) ={g: d = ¢ | G(g) = hy}. This is indeed a natural transformation because in the
diagram

F(d) =" R.(d)

the clockwise composition reads {(fo f'): ¢ = ¢ | G(f') = hy}, while the anticlockwise
composition yields {g: = ¢ | G(g9) = hp(s)(y)}, but these are equal by (). It follows from
the definitions of  and e, that « is the unique natural transformation making (1) commute.



