Topos Theory - Exercise Sheet 3

- 1. Use the fact that if \mathcal{E} is a topos then \mathcal{E}/X is also a topos for any object $X \in \mathcal{E}$ to show that the set Sub(X) of subobjects of X can be endowed with the structure of a Heyting algebra.
- 2. Check that the formula

$$G^{F}(C) := \operatorname{Hom}_{\operatorname{Set}^{\mathcal{C}^{op}}}(yC \times F, G)$$

makes G^F into an exponential in $\mathcal{S}et^{\mathcal{C}^{op}}$.

3. Check that the formula

 $\Omega(C) := \{ S \,|\, S \,\text{is a sieve in } \mathcal{C} \}$

makes Ω into a subobject classifier.