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1. For arbitrary elements a, b, ¢ of a distributive lattice, we have

3.

(avbd)A(aVve)=((aVd)Aa)V ((aVbd)Ac) (by distributivity)
=aV((aVb)Ac) (since a < aVb)
=aV(aAc)V(bAc) (by distributivity)
=aV(bAc) (since a A ¢ < a),

which shows that the dual distributive law also holds.

Recall that © = v is defined such that for every element ¢ we have cAu <v <= c<u=v.
In particular, cAz =0 <= ¢ < —x. Since a A x = 0, we immediately get that a < —x.
For the other inequality, notice that it holds if and only if ¢ < -z implies ¢ < a for every
element c. So let ¢ be an arbitrary element with ¢ < —z. Then ¢ A x = 0 holds by definition
of the Heyting implication. We show that ¢ < a holds by proving that a V ¢ = a. Note:

aVec=aV(cA1)
—aV(eA(zVa)
=aV((cAhz)V(cNa)) (by distributivity)
=aV(0V(cAa))
=aV(cAa)
= (a Ve)A(aVa) (by dual distributivity)
=(aVe)ha

as we wished to show.

(a) Let f: X — A and ¢g: X — B be monomorphisms and let u,v: Y — X be arbitrary
parallel arrows satisfying (f,g) o u = (f,g) o v. We must show that v = v. But
(f,g)ou=(f,g)ov implies fou=m0o(f,g)ou=m0(f,g)ov= fow, which yields
u = v, as f is mono.

NB: Note that the above show that it suffices for just one of f and g to be a mono.

(b) We start by labelling the arrows.

A—— B X —=Y
Ik
¢ —>D Z —— W



Suppose that we have arrows f: E — BxY and g: E — C x Z such that the equality
(¢,z) o f = (d,w) o g holds. We must show that there is a unique dashed arrow making
the diagram

S
Ax X 2% pyy

J(b,y) J(QZ)

Cxz " pxw
commute. Since (¢, z) o f = (d,w) o g, we have
(comiof,zomo f)=(dom og,womeog),
and therefore,
comof=domog and zomof=womog.

Hence, we obtain unique arrows k and [ making the diagrams

mof a0 f
—2 3 B —2 Y
D W

commute. Finally, (a,z)o (k,l) = (ack,x0l) = (m o f,my 0 f) = f and similarly, we
get (b,y) o (k,1) = g. Moreover, (k,1) is the unique such map, because suppose that
h = (h1,h2): E — A x X is another such map, then 710 f =aoh; and 709 = bohq,
so that hy = k by the uniqueness of k. Similarly, one proves that hy = [, and hence
that h = (k,1), finishing the proof.

We define A: Q x  — Q to be the classifying map of (true, true): 1 — Q x Q, which
is a monomorphism by part (a). Now let U — 1 and V »— 1 be arbitrary subterminals.
By part (b), the square

UxV — 1x121

I1x121] —— Q
(xv>xv)

is a pullback. Hence, by pullback pasting the outer rectangle in

UXV —mm 1 =—=——==1

J J{(true,true) true

1 (xv,xv) O x0 _ O

is a pullback too, which proves that A o (xu, xv) classifies U x V as a subobject of 1.



4. We sketch the constructions, but omit the verifications. We define the morphism V: 2 x —

Q) to be the classifying map of the join of the subobjects 2 M Qx O and
Q Q x Q . We define the morphism =: Q x Q — Q to be the classifying map

of the equalizer of  x Q i; Q.
T

(trueq,idg)

5. (a) We start by defining a functor x_: Mono(£) — £/Q which sends an object m: A — B
of Mono(€) to its classifying map x,,: B — Q. On morphisms, we send a pullback

square
A1y x
ml In
B — Y
to

B—9% vy
Q
where we need to check that the triangle commutes, i.e. that x, o ¢ = x.,,. But this

follows from the uniqueness of classifying maps and the fact that the outer rectangle in
the diagram

A%X%l

mI In true

BT’YT’Q

is a pullback, which is true because the left and right squares are pullbacks.

In the other direction, we define a functor (—): £/ — Mono(€). Given an object

p: X — Qof £/Q, we send it to the mono ¢: X — X given by pulling ¢ back along
true: 1 — Q. Given a morphism

x—71 Ly

N A

Q

in the slice category £/, we send it to the pullback square

X —Y
| B (1)
X —Y



where f is the unique dashed map making the diagram

commute. Notice that the square (7) is indeed a pullback, because the outer rectangle
and right hand square in the diagram

~ f ~

— Y ——
; l{; true
¥ Y .

S

—

b
o)

are both pullbacks.
We omit the verification that these functors constitute an equivalence.

Topoi have finite colimits, so in particular £/ has finite colimits. But Mono(€) and
E/Q are equivalent categories, so Mono(€) has finite colimits too.

Once again we only provide a sketch of the proof. Note that the diagram

B+—A—C

I

F+—F—{d

consists of two pullback squares, so we can consider its pushout in Mono(€), which we
denote by o: S — T. As part of the pushout property, we get pullback squares

B—*4 5 c 25
[ T I T ®
F—T G ——1T

Now given u: X — D and v: X — G making

X’\“l
C —— D (*)
h k

u

G— H

commute, we describe how to construct a map X — C which fits the diagram. From



the fact that the top square is a pushout, we get the dashed map z making

A——B

commute, where the maps x and y are as in (1). Finally, we use the right hand pullback
square in (1) to get a map from X to C as the unique dashed map making the diagram

zou

O—>S

[r p

G——T

commute. We omit the verification that the dashed map makes the diagram (*) commute
and that it is the unique map to do so.



