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1. For arbitrary elements a, b, c of a distributive lattice, we have

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c) (by distributivity)
= a ∨ ((a ∨ b) ∧ c) (since a ≤ a ∨ b)
= a ∨ (a ∧ c) ∨ (b ∧ c) (by distributivity)
= a ∨ (b ∧ c) (since a ∧ c ≤ a),

which shows that the dual distributive law also holds.

2. Recall that u⇒ v is defined such that for every element c we have c∧u ≤ v ⇐⇒ c ≤ u⇒ v.
In particular, c ∧ x = 0 ⇐⇒ c ≤ ¬x. Since a ∧ x = 0, we immediately get that a ≤ ¬x.
For the other inequality, notice that it holds if and only if c ≤ ¬x implies c ≤ a for every
element c. So let c be an arbitrary element with c ≤ ¬x. Then c∧ x = 0 holds by definition
of the Heyting implication. We show that c ≤ a holds by proving that a ∨ c = a. Note:

a ∨ c = a ∨ (c ∧ 1)
= a ∨ (c ∧ (x ∨ a))
= a ∨ ((c ∧ x) ∨ (c ∧ a)) (by distributivity)
= a ∨ (0 ∨ (c ∧ a))
= a ∨ (c ∧ a)
= (a ∨ c) ∧ (a ∨ a) (by dual distributivity)
= (a ∨ c) ∧ a
= a,

as we wished to show.

3. (a) Let f : X � A and g : X � B be monomorphisms and let u, v : Y → X be arbitrary
parallel arrows satisfying (f, g) ◦ u = (f, g) ◦ v. We must show that u = v. But
(f, g) ◦ u = (f, g) ◦ v implies f ◦ u = π1 ◦ (f, g) ◦ u = π1 ◦ (f, g) ◦ v = f ◦ v, which yields
u = v, as f is mono.
NB: Note that the above show that it suffices for just one of f and g to be a mono.

(b) We start by labelling the arrows.

A B

C D

a

b c

d

X Y

Z W

x

y z

w
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Suppose that we have arrows f : E → B×Y and g : E → C ×Z such that the equality
(c, z) ◦ f = (d,w) ◦ g holds. We must show that there is a unique dashed arrow making
the diagram

E

A×X B × Y

C × Z D ×W

f

g

(a,x)

(b,y) (c,z)

(d,w)

commute. Since (c, z) ◦ f = (d,w) ◦ g, we have

(c ◦ π1 ◦ f, z ◦ π2 ◦ f) = (d ◦ π1 ◦ g, w ◦ π2 ◦ g),

and therefore,

c ◦ π1 ◦ f = d ◦ π1 ◦ g and z ◦ π2 ◦ f = w ◦ π2 ◦ g.

Hence, we obtain unique arrows k and l making the diagrams

E

A B

C D

π1◦f

π1◦g

k

a

b c

d

E

X Y

Z W

π2◦f

π2◦g

l

x

y z

w

commute. Finally, (a, x) ◦ (k, l) = (a ◦ k, x ◦ l) = (π1 ◦ f, π2 ◦ f) = f and similarly, we
get (b, y) ◦ (k, l) = g. Moreover, (k, l) is the unique such map, because suppose that
h = (h1, h2) : E → A×X is another such map, then π1 ◦ f = a ◦h1 and π1 ◦ g = b ◦h1,
so that h1 = k by the uniqueness of k. Similarly, one proves that h2 = l, and hence
that h = (k, l), finishing the proof.

(c) We define ∧ : Ω× Ω→ Ω to be the classifying map of (true, true) : 1 � Ω× Ω, which
is a monomorphism by part (a). Now let U � 1 and V � 1 be arbitrary subterminals.
By part (b), the square

U × V 1× 1 ∼= 1

1× 1 ∼= 1 Ω

true

(χU ,χV )

is a pullback. Hence, by pullback pasting the outer rectangle in

U × V 1 1

1 Ω× Ω Ω

(true,true) true

(χU ,χV )
∧

is a pullback too, which proves that ∧ ◦ (χU , χV ) classifies U × V as a subobject of 1.
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4. We sketch the constructions, but omit the verifications. We define the morphism ∨ : Ω×Ω→
Ω to be the classifying map of the join of the subobjects Ω Ω× Ω(idΩ,trueΩ) and

Ω Ω× Ω(trueΩ,idΩ) . We define the morphism ⇒ : Ω× Ω→ Ω to be the classifying map

of the equalizer of Ω× Ω Ω
∨

π1
.

5. (a) We start by defining a functor χ− : Mono(E)→ E/Ω which sends an object m : A� B
of Mono(E) to its classifying map χm : B → Ω. On morphisms, we send a pullback
square

A X

B Y

f

m n

g

to
B Y

Ω
χm

g

χn

where we need to check that the triangle commutes, i.e. that χn ◦ g = χm. But this
follows from the uniqueness of classifying maps and the fact that the outer rectangle in
the diagram

A X 1

B Y Ω

m

f

n true

g χn

is a pullback, which is true because the left and right squares are pullbacks.
In the other direction, we define a functor (̃−) : E/Ω → Mono(E). Given an object
ϕ : X → Ω of E/Ω, we send it to the mono ϕ̃ : X̃ → X given by pulling ϕ back along
true : 1→ Ω. Given a morphism

X Y

Ω
ϕ

f

ψ

in the slice category E/Ω, we send it to the pullback square

X̃ Ỹ

X Y

f̄

ϕ̃ ψ̃

ϕ

(†)
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where f̄ is the unique dashed map making the diagram

X̃

Ỹ 1

Y Ω

f◦ϕ̃

f̄

ψ̃ true
ψ

commute. Notice that the square (†) is indeed a pullback, because the outer rectangle
and right hand square in the diagram

X̃ Ỹ 1

X Y Ω

f̄

ϕ̃ ψ̃ true

ϕ

ψ

are both pullbacks.
We omit the verification that these functors constitute an equivalence.

(b) Topoi have finite colimits, so in particular E/Ω has finite colimits. But Mono(E) and
E/Ω are equivalent categories, so Mono(E) has finite colimits too.

(c) Once again we only provide a sketch of the proof. Note that the diagram

B A C

F E G

g f h

consists of two pullback squares, so we can consider its pushout in Mono(E), which we
denote by σ : S � T . As part of the pushout property, we get pullback squares

B S

F T

x

g σ

C S

G T

y

h σ (‡)

Now given u : X → D and v : X → G making

X

C D

G H

u

u
h k

(?)

commute, we describe how to construct a map X → C which fits the diagram. From
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the fact that the top square is a pushout, we get the dashed map z making

A B

C D

S

x

y

z

commute, where the maps x and y are as in (‡). Finally, we use the right hand pullback
square in (‡) to get a map from X to C as the unique dashed map making the diagram

X

C S

G T

v

z◦u

y

h σ

commute. We omit the verification that the dashed map makes the diagram (?) commute
and that it is the unique map to do so.
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