
Structure and Equality in Type Systems
CNRS Research Proposal

Eric Finster

January 8, 2019

1 Motivation

Among the most ubiquitous and useful tools in the theory of programming languages is that of a type system.
In its most elementary incarnation, a type system organizes the data manipulated by programs into types,
allowing the functions and procedures comprising a program to be annotated with information about the
kinds of data they consume as input and subsequently produce as output. Analysis of these annotations by
a compiler or interpreter then allows for some basic sanity checks about the well-formedness of programs,
ensuring, for example that functions are only applied to arguments which are in their domain. What is
not at all obvious upon first encountering this simple and natural idea is that, carried to its inevitable
conclusion, it leads to a unification of programming, logic and constructive mathematics. This unification
takes place through the correspondence between logic and type theory known as propositions as types, and
it has some strong consequences. A sufficiently strong type system thus serves a dual role, both pratical and
theoretical: it is at once a functional programming language suited to the implementation of algorithms, as
well as sophisticated mathematical tool for specifying and proving properties said programs.

The past decade has seen an even more startling development in this story: as first observed by Awodey
and Warren [5] and independently by the Field’s Medal winning mathematician Vladimir Voevodsky, the
subtle properties of equality in type systems lead to deep connections with a branch of mathematics known as
homotopy theory. Moreover, the implications of this connection for the treatment of mathematical structures
prompted Voevodsky to propose that type theory, rather than the current foundations based on set theory,
or a hypothetical one based on category theory, is the proper foundation for the mathematics of the 21st
century, a point of view he codified in his Univalent Foundations Program. As we will see below, his ideas in
many respects complete and clarify the propositions as types paradigm, pointing the way to a new generation
of proof assistants and type theories with a more refined view of both equality and structure.

This research proposal seeks to follow up on the implications of these ideas, both as applied in com-
puter science to the design of more sophisticated programing languages and proof assistants, as well as in
mathematics, where as we will see, a similar revision in our way of thinking about structure and equality
is taking place with the advent of tractable theories of higher categories. I begin with a review of some
of the basic ideas motivating recent developments, along the way tracing the twin themes of structure and
equality, themes which I feel will play a major role in the next generation of programming languages and
proof assistants.

1.1 Propositions as Types

The source of this rich interplay between programming and logic is known as the Curry-Howard correspon-
dence, or more colloquially as the doctrine of propositions as types [18]. Though many variants and extensions
of this basic idea exist and are well studied in the literature, the orginal and motivating example connects
the logical connectives of intuitionistic logic (for example, implication ⇒, conjunction ∧ and disjunction ∨)
with corresponding type constructors in the simply typed λ-calculus, (function types →, product types ×,
and sum types t). Under this correspondence, proofs of intuitionistic formulae can be recorded as terms

1



of the λ-calculus. The corresponding λ-terms are then seen as programs, computing a value of their return
type and under this correspondence, cut elimination of natural deduction style proofs corresponds to the
normalization of the associated λ-terms.

An enormous body of work in computer science attests the the fruitfulness of this perspective. By
considering other logics, for example, we can ask if they have computational interpretations so that logic
can suggest new ideas in programming language theory (Girard’s linear logic, is a famous example of this
technique). And conversely, we can consider ideas which arise naturally in programming languages and
use the Curry-Howard correspondence to extract new logics, whose rules naturally capture ideas of a given
problem domain (recent examples are ideas like session types and separation logic).

Propositions as types is also at the center of the connection between functional programming and category
theory, and this connection has had an enormous impact both practcally in terms of how functional programs
are constructed and structured, but also theoretically as categorical methods have come to dominate our
understanding of the semantics of both programming languages and logic: indeed, type systems themselves
can be regarded as presentations of structured categories.

Finally, the propositions as types paradigm is at the center of the design of the type systems of many
popular languages in wide use today such as Ocaml, Haskell, Scala, F# and more. As programmers seek
more sophisticated and expressive languages, the proposition as types paradigm sets out natural design
principles and leads to more regular and less ambiguous specificaions.

1.2 Structure and Equality

Despite the uncontestable success of the propositions as types paradigm in programming language theory,
its restriction to the simply typed case described above has some limitations. As these limitations lead
naturally to the themes explored in this proposal, we pause here to describe them. Specifically, the logics
corresponding to simply typed languages are not rich enough to described structured types nor to support a
consistent theory of equality. As we will see, modern functional languages take an ad-hoc appraoch to both
of these ideas.

To take a specific example, consider the addition function on the natural numbers: + : N×N→ N. This
function can of course be defined in any modern programming language. And the paradigm of propositions
as types gives this function a logical reading: the assumption of a pair of natural numbers (n,m) : N × N
implies the existence of a third: namely, n+m. The proof of this statement is the program computing their
sum. Mathematically speaking, however, more is true: this operation equips the type N with the structure of
a commutative monoid. And in fact, many statements about addition of natural numbers generalize to the
case of any commutative monoid. A natural application of the propositions of types paradigm, then, would
be to use the logic it furnishes us with to make and prove statements about this structure. Unfortunately,
the language of formulae we obtain from simple types is simply not rich enough to even describe what a
commutative monoid is.

On the other hand, this idea of a structure, that is, a type or collection of types equipped with operations
satisfying some axioms, is pervasive both in mathematics and computer science. One might go so far as
to say that mathematics is the study of such structures. Similarly, in computer science we find this idea
incarnated, for example, in the notion of an abstract data type, and it is arguably at the heart of ideas like
abstraction and encapsulation in object-oriented programming. The fact is that the idea of structured types
arises so naturally that most modern languages provide at least some facilities for defining and manipulating
them. In Haskell, for example, such structures are implemented using type-classes; Ocaml uses its system
of modules and functors. And of course object-oriented languages implement these ideas using classes and
interfaces. But by separating the implementation of structured types from the type system itself, we lose the
ability to reason about them, and this, after all, was what the propositions as types should have provided
us with.

Moreover, there is a second limitation of the simply typed case: while propositions as types connects
logical assertions with types, in the simply typed case, there is no type corresponding to one of the most
important assertions of all, namely, the assertion that two terms are equal. As a consequence, our simply
typed logics are too weak to support equational reasoning. In practice, this means that most languages,

2



though they may provide support for structures in other ways, completely ignore the axioms that these
structures must satsify, leaving them to the programmer to verify separately. Worse, in most languages,
equality itself is left to be implemented in an ad-hoc manner: the programmer is responsible for implementing
his own notion of equality for each newly introduced type. Misunderstandings, misuses and incorrectly
specified notions of equality are at the heart of innumerable software bugs and inconsistencies. In situations
where formally verified software is important, leaving a notion as fundamental as equality to be implemented
in such a way is clearly unreasonable.

1.3 Dependent Types

Both of these limitations can be to a certain extent overcome by passing to dependent type systems. Antici-
pated already by Howard in describing the correspondence which bears his name, this project was taken up
by the Swedish logician Per Martin-Löf who described the first examples of such systems. If types correspond
to propositions, then dependent types correspond to predicates, and the passage from simple to dependent
types is analagous to the passage from propositional logic to predicate logic. Equipped with a much richer
language of types, in a dependent type system, we can state and prove essentially arbitrary statements about
programs.

A fundamental idea in dependent type theory is the existence of a universe of types, which I will denote
Type, and whose inhabitants are themselves types 1. Given a type X, a dependent type can then be modeled
as a function P : X → Type, that is, it is an assignment to every element x : X of a type P x so that P may
be seen as a family of types varying over the elements of X. From here, one can introduce the dependent
sum

∑
x:X P x, whose elemets are pairs (x, p) where x : X and p : Px, and the dependent product

∏
x:X P x

whose elements are λ-terms λx.p(x) where p(x) : P x. These two constructions will serve as the existential
and universal quantifiers in our enriched logic of types.

Finally, the introduction of type dependency, by which terms may themselves appear in types, allows for
the introduction of the identity type. That is, for elements x, y : X we suppose the existence of a new type
IdX x y whose inhabitants are proofs that x and y are equal. Notice how this type is necessarily dependent
on the terms we are comparing, which explains its absense in a simple type systems. It was Martin-Löf who
first introduced these types, explaining their introduction and elimination rules.

Armed with these innovations, we can now start to describe structured types in the sense of the last
section. For example, we might consider a basic structure: that of a type X equipped with an endomorphism
α : X → X. In dependent type theory, we can use the dependent sum to write

Endo :=
∑

X:Type

(X → X)

so that inhabitants of this type are exactly pairs as desired. Notice how this definition internalizes this
notion of structure in the sense that there is a type of “types equipped with an endomorphism”. Hence
dependent types allow use to integrate the notion of structure into the type system itself and subsequently
reason about these structures.

In principle, all such structures can be expressed as iterated dependent sums, but for more sophisticated
examples, it will be convenient, in order to reduce clutter, to express them as dependent record types (of
which Σ can be see as a special case). Figure 1 uses this method to define one of the most useful structures in
computer science, that of a category. Notice in particular the use of the identity type to specify the axioms
of the structure. It may be surprising then that this direct translation of the notion of a category from
mathematics turns out not to be the correct definition in general, an idea we will return to presently.

Equipped with the notion of type dependency, and a workable theory of equality, the propositions as
types paradigm reaches its full potential. We now have a language in which we can not only write programs,
but simultaneously a logic in which we can make, and prove, essentially arbitrary statements about the
behavior of our programs. Moreover, we can define various notions of structured types, and explore the
properties which follow from the axioms of our structure, thus providing a powerful means of abstraction.

1Universes must, of course, be stratified by size to avoid paradox, but I will ignore these complications here.

3



recordCategory :=

Ob : Type Hom : Ob→ Ob→ Type

◦ :
∏

x,y,z:Ob

Homy z → Homxy → Homxz id :
∏
x:Ob

Homxx

unit-l :
∏

x,y:Ob

∏
f :Homxy

IdHomxy (f ◦ id x) f unit-r :
∏

x,y:Ob

∏
f :Homxy

IdHomxy (id y ◦ f) f

assoc :
∏

x,y,z,w:Ob

∏
f :Homxy

∏
g:Homy z

∏
h:Homz w

IdHomxw(h ◦ (g ◦ f)) ((h ◦ g) ◦ f)

Figure 1: Naive definition of a category

This idea is at the heart of proof assistants such as Coq, Agda and Lean as well as the dependently typed
programming language Idris. These systems have enjoyed spectacular successes, both in the formalization of
highly non-trivial theorems such as the Feit-Thompson theorem and Four-color theorem, as well as in formal
methods as applied in computer science as witnessed by the CompCert certified C compiler.

1.4 Univalent Type Theory

At first sight, it may seem that the introduction of dependent types has solved our problem: we now have
a type system rich enough to describe arbitrary structures and prove facts about them, with these facts
implemented as programs, just as one might expect from the propositions as types paradigm. But the
dependent type system described above turns out to have some strange features, particularly with respect
to the treatment of equality. And as we will see, this realization necessitates a serious revision in the way
we think about structured types.

A first thing to notice in this regard is that, the formation rule for the identity type means that it can be
iterated. Indeed, if elements p, q : IdA x y represents proofs that the terms x and y are equal, then an element
α : IdIdA x y p q is a proof that these two proofs are equal. On the other hand, the introduction rule for the
identity type essentially says that there is only one way to inhabit it: by the unique term refl when x and y
are definitionally equal. One might be justified, therefore, in thinking that these higher identity types must
all be trivial. This turns out to be far from the case. It was first shown by Hoffman and Streicher using a
model of type theory in groupoids that it was indeed possible to have non-trivial higher equalities, so that at
least their triviality could not be proven it type theory itself. They also suggested that more sophisticated
models could be obtained by thinking about the objects mathematicians know as weak higher groupoids.
Later, Awodey and Warren noticed that the identity elimination rules made them into path objects in a
structure known to topologists as a Quillen model category, thus uncovering a link with homotopy theory.

But it was with his introduction of Univalent Foundations that Voevodsky finally realized the implications
of these ideas: the types of dependent type theory should be though of as constructive spaces and not, as
evisioned by Martin Löf as constructive sets. The elements of their identity types, then, can be imagined
as paths, paths between paths, ... and so on. This allows one to apply ideas coming from topology to the
study of types.

Moreover, Voevodsky’s insights have serious ramifications for the propositions as types paradigm we have
been examining. To see why, first we introduce the notion of a contractible type, which is defined by the
following pleasant formula combining the three essential type constructors of dependent type theory:

is-contrX :=
∑
x:X

∏
y:X

IdX x y

We can now use this definition to control the complexity of the hierarchy of iterated identity types described
above by introducing the notion of the h-level of a type. The definition is given by induction (which for

4



historical reasons, it is convenient to start at −2):

is-of-levelX (−2) := is-contrX

is-of-levelX (S n) :=
∏

x,y:X

is-of-level (IdX x y)n

Intuitively speaking, then, a type is of h-level n for n ≥ −2 if its identity types become contractible after
n+ 2 iterations.

Examining the first few cases of this definition is quite instructive. The case n = −2 conicides with
contractibility by definition, but it is nonetheless worth pointing out that if a type is of level n, then it is also
of level n+ k for any k ≥ 0. In particular, all of the higher path types of a contractible type are themselves
contractible. In other words, in a contractible type, not only is every element equal to a given element, but
any two witnesses of these equalities are themselves equal and so on. In this respect, contractibility is a
strong form of uniqueness which propagates throughout the tower of higher identity types.

Types of level −1 have the property that, if they are inhabited, then any two inhabitants are necessarily
equal, and in a unique way. 2. We thus say that such types are propositions and they play the role of
truth values. If the propositions as types paradigm started out as an analogy between logic and types, the
univalent persepctive lifts the analogy to a formal statement: logic is a special case of type theory, and this
special case can be distinguished, in the present of equality, inside of type theory itself.

The next two levels are also familiar objects: types of level 0 are sets. Their defining property is that, if
two elements x and y of a set are equal, then they are equal in a unique way. Otherwise stated, the sets are
exactly those types for which being equal is a proposition in the sense just introduced. This is why we can
think of elements of a set as having no internal structure and why, in classical mathematics where all objects
are sets, we do not typically worry about whether “two proofs that two elements are equal are themselves
equal”. In a theory consisting only of sets, this question never arises.

Finally, types of level 1 correspond to the mathematical notion of a groupoid. In a groupoid, between any
two elements x and y, we have a set of ways in which they might be equal. In particular, any element x in a
groupoid has a possibly non-trivial set of automorphisms, and for this reason, we can imagine groupoids as
collections of objects with symmetries. In particular, the theory of groups, so central in classical mathematics,
is recovered by the theory of connected 1-types. It is remarkable that elementary considerations in computer
science lead naturally to this enrichment of the basic vocabulary of mathematics.

The existence of this tower of h-levels is inspired by a similar construction in topology (the Postnikov
tower of a spce), showing how intuitions from this subject can now be applied to the study of types. Indeed,
I was a participant in the year long program at the Institute for Advanced Study in Princeton which was
organized to investigate these ideas. It should be noted that it was not immediately clear at the outset that
types would in fact bahave in a way consistent with their interpretation as homotopy types, as only the
rudiments of the theory had been developed at that time. By now, however, there is no longer any doubt:
an amazing number of sophisticated ideas and constructions from topology have now been applied to the
types of type theory. The connection is indeed so close that it is probably not an exaggeration to say that
the constructive theory of equality and homotopy theory are essentially one and the same.

1.5 The Coherence Problem

While the univalent perspective greatly clarifies the behavior of equality in dependent type theory, it un-
fortunately complicates the situation for describing structured types. The problem is well known in the
literature on homotopy theory and higher category theory, and can be summed up as follows: from our
experience with set theoretic foundations, we are accustomed to specifying structures as consisting of sets
equipped with operations. We then impose axioms on these operations in the form of equations. But in
the presence of higher equalities, we must also specify equations among the equations. And then further
equations among these new equations, and so on, infintely often. In short, to have well behaved structured

2Classically, we would say the such types are either empty, or contractible, which can be a helpful intuition. Intuitionistically,
however, the provided description is more accurate.

5



types in the presence of higher equalities, it is not sufficient to explain the equations at the next level, which
is to say using just a single application of the identity type to the types involved. Rather we must explain
the equations of our structure throughout the whole tower of higher equalities.

Far from being a mere theoretical curiosity, this problem has direct consequences for the axiomatization
of structures inside dependent type theory. To illustrate, recall the naive definition of category given in
Figure 1. On its face, this appears to be a perfectly natural translation of the definition of category into
type theory. But as we begin developing the theory, problems start to arise. Consider, for example, the
problem of defining one of the most elementary constructions of category theory: the slice category. For this
construction, we fix a category C and an object x : ObC. The objects and morphisms of the new category
C/x can be defined as

Ob (C/x) :=
∑

y:ObC

∑
f :Homy x

Hom (C/x) (y, f) (z, g) :=
∑

h:Homy z

IdHomy x (g ◦ h) f

In other words: objects are morphisms of C with codomain x and morphisms are commutative triangles.
Notice how the appearence of the identity type means that that the definition carries a witness that the
triangle is commutative.

Now, when we attempt to define a category structure with the above definitions, things begin smoothly:
we find that we can define composition, but that the definition uses the associative law of the original
category C. When we try to show that this new composition is associative, we find that we cannot succeed.
What is missing is exactly the information that the various proofs of associativity are compatible with each
other. It is well known that a sufficient condition for this to be the case is MacLane’s pentagon identity
(Figure 2), which relates two different ways of reassociating a composite of four morphisms. Working out
the type of this equation shows that it lives in a doubly iterated identity type (we say that it is a 2-cell).

(fg)(hk)

((fg)h)k

(f(gh))k f(g(hk))

f((gh)k)

⇒

Figure 2: Pentagon

We could try adding this axiom as part of the definition of category, but then we would be required
to prove it during the construction of the slice category. And here again, we would find that we needed a
compatibility between the various instances of the pentagon identity, which itself would be a 3-cell, living in
a triply iterated identity type. This quickly leads to an infinite regress: we find that even just to perform the
elementary construction of the slice category, our definition of category requires infinitely many equations,
arbitrarily high in the tower of identity types. One way around this problem is to assume that all the types
involved are sets. 3 In this case, any extra “coherence conditions” are automatically satisfied since the higher
identity types are contractible. But this simply avoids the problem rather than solving it. The question
remains: what is the correct definition of a category structure on an arbitrary type?

This problem is characteristic of structures in the presence of a proof relevant equality such as we find
in dependent type theory. To illustrate the prevalence of the problem, consider an example from functional
programming. Recall that a common way of organizing functional programs is via the structure of a monad.
A monad is a type constructor equipped with two operations, often called bind and return. Moreover, these

3Indeed, this is what is done, either explicitly or implicitly, in all the formalizations of category theory in type theory which
exist today. A common way of accomplishing this before the introduction of h-levels was to assume the types supported a
decidable equality, which implies they are sets.

6



operations are required to satisfy some equations referred to as the monad laws or triangle identities. Now
suppose we wanted to reason formally about a functional program which employed some form of monadic
programming. We would naturally need, at some point, to show that the type constructor was, indeed, a
monad. In other words, we would need to verify the monad laws. But here is the problem: generalized
to arbirary types, the traditional monad laws are not complete, for the same reason that the category laws
discussed above are not. Indeed, until recently (see Section 2) the correct definition of monad in a proof-
relevant setting was not even known. We hope the reader will agree that this is not a satisfactory situation
for formal software verification.

Luckily, similar problems are well-studied in mathematics, and a theory of these structures is already
known in that setting. The correct definition of category in a proof relevant setting is what mathematicians
call an (∞, 1)-category. I cannot here explain how mathematicians deal with the problem, but the reader
can get an intuition for what such an object is from the discussion above: it is what arises if we replace the
hom sets in the definition of category with hom types and then specify all the higher equations controlling
associativity throughout the tower of identity types.

1.6 Summary

The doctrine of propositions as types connects types and logic, suggesting a way to reason about programs
using type theory itself. The introduction of dependent types furnishes us with a language rich enough to
describe structured types and reason about them equationally using the identity type. These capabilities
play a crucial role in the pursuit of formally verified software.

But the identity type of Martin-Löf turns out to be significantly more complicated than might first be
expected, and in order to have better control of dependently typed languages and their capabilities, we need
to understand its behavior, including its deep connections with homotopy theory. The perspective offered
by univalent type theory gives us a way to understand and predict how this equality should behave, and
clarifies the connection between logic and type theory, while at the same time uncovering subtle problems
with the most naive notions of structured types.

The design and implementation of the next generation of proof assistants and strongly typed languages
will surely require a deeper understanding of these phenomena and their interactions with mathematics.

2 Project

In view of the ideas introduced above, my reasearch proposal seeks to continue to investigate the properties
of equality and structure, not only in type theory, but more generally as these topics appear in computer
science.

2.1 Coherent Structures in Type Theory

As we have seen, correctly describing structured types in the presence of a proof relevant equality is sig-
nificantly more subtle than might first have been imagined. Indeed, it was these considerations that led
Voevodsky already in 2013 to propose a new type system, reintroducing a “strict” equality, which enabled
him to get around this problem. Variations on this idea such as [4] have also been proposed. It had been
widely believe for some time that a modification of type theory of some sort was necessary to allow to
properly deal with coherent structures.

This turns out not to be the case. Recently, I showed how one can in fact solve this problem in ordinary
dependent type theory by introducing a definition of a polynomial monad. 4 This definition has been fully
formalized [8], meaning that we now have a complete definition of coherent structure in a number of special
cases. To date, it is the only such definition available in type theory. There are a number of immediate and
important application of these ideas, which I will now describe.

4Unfortunately, as this work is quite recent, it has not had time to appear in print. Online descriptions are available,
however, as notes [9] and a video lecture [11].

7



2.1.1 Polynomial Monads and Their Algebras

While I cannot describe fully the solution to this problem in this proposal, a couple of remarks are in order
to motivate the projects which will follow. The overall approach is inspired by the work of Baez-Dolan on the
categorification of algebraic structures [6]. Their point of departure is a structure known in mathematics as a
symmetric operad. Recent developments [13] have shown that, in type theory, this notion becomes equivalent
to that of a polynomial monad in the sense of [12], and hence I will freely apply their ideas to this closely
related structure. As polynomial functors are well studied in the computer science literature (where they
are commonly employed in the study of the semantics of inductive types) this shows that the Baez-Dolan
approach is closely connected with the theory of inductive definitions and hence naturally adapted to type
theory.

The main innovation of Baez-Dolan is the introduction of what they call the plus construction, which,
starting from a polynomial monad, produces a new polynomial monad whose multiplication can be thought
of as encoding the relations present in the original. Intuitively speaking, we can think of these relations
as living “one dimension higher”. Iterating this construction generates an infinite tower of monads, each
of whose multiplication witnesses the associativity and unicity of the previous monad. That is, the monad
laws at one level are encoded by the monad multiplication at the next. The key insight needed to adapt this
approach to type theory is to recognize that the existence of this infinite tower of derived monads can be taken
as the definition of what it means for the original monad to be coherent. Moreover, an important aspect of
this definition is that special cases recover structures of crucial importance: (∞, 1)-operads, (∞, 1)-categories
and ∞-groupoids can all be seen as examples of polynomial monads.

Recall from categorical algebra that a monad can be seen as a way of encoding a particular kind of
algebraic structure. Hence it is quite convenient that a coherent notion of polynomial monad can be defined
in type theory, since this means that we can take this as definition of what a coherent structure on types
is: to define a coherent structure on types is to define a polynomial monad. The models of the structure so
defined are then the algebras for the monad in question.

As mentioned above, the definition of polynomial monad has already been implemented in dependent
type theory, showing its feasibility. The definition of algebra, on the other hand, remains to be finished.
Thus an immediate short term goal is:

Goal 1 Finish the formalization of the definition of coherent algebra over a polynomial monad.

Among all the polynomial monads, there is one which is distinguished: the terminal monad. As it
happens, the terminal example of a polynomial monad turns out to be quite interesting: it is the universe
Type of type theory itself, equipped with the operation of dependent sum

∑
. In some respects this structure

is more fundamental than the (∞, 1)-category structure on the universe in which the morphims are functions
between types, though the two structures are closely related. As it is the terminal example, one might be
tempted to think that it should be quite easy to construct. But as the construction of any polynomial monad
requires the specification of an infinite number of coherence conditions, things are not quite so simple. I
have already what looks like a promising approach based on Voevodsky’s univalence axiom, but the details
remain to be fully checked.

Goal 2 Construct the monad structure on Type and show that it is the terminal example. Use this to show
that Type is an internal (∞, 1)-category.

2.1.2 The Groupoid Structure on Types

We have see that the tower of identity types endows types with an extremely rich algebraic structure known
in mathematics as as an∞-groupoid. Roughly, one can think of these objects as what is left of a topological
space after one removes all the information about “nearness” of points, retaining only the algebraic structure
of composition which exists on paths, paths between paths, and so on. These structures are notoriously
difficult to define rigorously, even in classical mathematics. It has been a long standing open problem to

8



describe these structures internal to type theory. In other words, to characterize inside of type theory itself,
the structure that one finds on types.

As it happens, a special case of the definition of polymonial monad is in fact a definition of ∞-groupoid.
As the model one naturally obtains from this definition is based on the geometry of opetopes, I will refer to
these as opetopic ∞-groupoids in what follows. One is thus led naturally to the following conjecure:

Conjecture 1 The type of opetopic ∞-groupoids is equivalent to Type.

In other words, every type admits the structure of an∞-groupoid internally, and that structure is unique.
In fact, there is ample evidence for this conjecture, and I believe a clear path to proving it. Moreover, a
proof of this conjecture would be an indication that we had thoroughly understood how to handle infinite
towers of coherence, and could describe explicitly all the operations one has in the tower of higher equalities
on a type.

2.1.3 Simplicial Types and Internal Kan Complexes

A long standing open problem in type theory has been the definition of simplicial types. In fact, a special
case of the definition of polynomial monad is that of an∞-category. An algebra over such a monad turns out
to be exactly a Type-valued diagram on the category. This leads to a resolution of the problem of defining
simplicial types: a simplicial type is an algebra for the category ∆, regarded as a monad with only unary
operations. A formalization of this definition is already underway, but not yet complete.

Goal 3 Finish the formalization of simplicial types.

As a result, it should be possible to internalize many of the simplicial techniques most commonly used
for the definition coherent structures in mathematics. For example, a well known definition of ∞-groupoids
starting from simplicial types asks that they satisfy the Kan lifting condition. Repeating this definition in
type theory presents no theoretical challenge once a definition of simplicial type is established (indeed, this
was the most commonly proposed plan for defining coherent objects in the first place.) Again, one has a
natural conjecture for how these objects behave:

Conjecture 2 The type of internal Kan complexes is equivalent to Type.

Observe that, the combination of Conjectures 1 and 2 would give a proof of the following:

Corollary 1 The type of Kan complexes and the type of opetopic ∞-groupoids are equivalent.

Note that this statement is not known in the mathematical literature, but it seems quite likely that it can
be demonstrated using the techniques I have outlined. And in fact, this example illustrates a more general
point: there are many variations (cubical, globular, cellular, etc.) on the definition of ∞-groupoid in the
literature. In type theory, however, we have a canonical definition: an ∞-groupoid is just a type. Hence all
proposed definitions of ∞-groupoid can be tested in this way: the definition is coherent exactly when one
can show that the type of its models is equivalent to Type. This may not immediately seem useful, but in
fact it is an important sanity check: often we are interested in structures which reduce to ∞-groupoids in a
special case (as with the case of polynomial monads) and constructing such an equivalence is good evidence
that the definition is correct.

2.1.4 (∞, 1)-Category Theory

Higher category theory itself has seen something of a revolution in the past decade owing to the widespread
adoption of the theory of quasicategories developed by André Joyal and Jacob Lurie, who showed that
essentially all the constructions of ordinary category theory could be extended to this model of (∞, 1)-
categories, occassionally with some modifications or clarifications. These results have been hugely influential
in homotopy theory and algebraic geometry. With a working definition of (∞, 1)-category in type theory, it
now becomes possible to start developing this theory. Hence:

9



Goal 4 Develop the theory of (∞, 1)-categories in type theory.

Of course category theory is a huge subject, so this is a long term project which is likely to take years
of development and even in that case, remain relatively open-ended. Nevertheless, even the basic definitions
and fundamental constructions like limits and colimits, slice categories, categories of functors and so on would
significantly expand the possibilities for what we can formalize in type theory. Putting these definitions in
place using the techniques described above is an important medium-term goal in the study of structures in
type theory.

2.1.5 Internal Semantics of Type Theory

Another major application of the theory of polynomial monads is to the study of the semantics of type theory
itself. The fact is that, prior to this theory, the only method available to construct models of type theory was
to pass via either (constructive) set theory, or else 1-category theory, which implicitly employs set-truncated
objects. This is the reason that much of the meta-theory of type theory relies on “strictification” results:
in these models, we must quotient the syntax of type theory by a set-level equivalence relation in order to
interpret it in a set-level model.

On the other hand, the univalent perspective suggests that, these set-truncated models are not the most
natural: after all, type theory is a theory of types, which are more general than sets. Indeed, it is an
often repeated mantra that type theory should serve as an internal language for (∞, 1)-categories. But this
statement is difficult to make precise exactly because, in classical mathematics, our only way of accessing
the theory of (∞, 1)-categories is to model them as set theoretic structures. This is a crucial point: the only
theory we know of which can directly make sense of higher structures axiomatically is type theory itself!
Hence we should expect that the natural home for describing the semantics of type theory is an internal
theory of categories built on types, and not on sets.

In fact, many attempts have been made to give a semantics of type theory in type theory [2] [7] [17], and
many partial results have been obtained. On the other hand, none is completely satisfactory: after defining
type theory internally, it should be possible to show that Type itself is a model of the theory, and this has
faced coherence problems of the kind described in the introduction. In retrospect, this is not surprising:
internally, Type is not a 1-category, it is an (∞, 1)-category, and this mismatch is the source of the coherence
problems.

Now that an internal definition of (∞, 1)-category is available, it seems entirely reasonable to expect to
make progress on this problem. Indeed, it has been speculated that a way forward would be to generalize a
well known tool in the categorical semantics of type theory, that of a category with families, to the case of an
(∞, 1)-category with families. Using the theory of polynomial monads and their algebras, such a definition
is clearly possible. Viewed as a formalization project in type theory, working out the details of such a
construction is likely to take some time, but it seems clear that we should be able to construct fully weak
internal models of type theory within the next couple of years.

Goal 5 Give a definition of (∞, 1)-category with families. Use this to describe an internal semantics of type
theory.

Furthermore, an extremely well known and flexible class of models of type theory are sheaf models.
Using sheaf models we can typically show results such as strong normalization and canonicity, as well as
prove independence results by constructing models which violate various principles. Again, these models are
typically done at the level of sets, exactly because there has previously been no reasonable definition of an
internal category of Type-valued sheaves. We now have a clear path to developing just such a definition.

Goal 6 Develop internal sheaf models of type theory. Use this to prove normalization and canonicity results
in type theory without any set-truncation hypotheses.

10



2.1.6 Higher Inductive Types

As remarked above, there are close connections between the theory of polynomial monads and the theory
of inductive types. Indeed, a well-known semantic description of inductive types realizes them as initial
algebras for polynomial functors. But an equivalent characterization is to say that they are initial algebras
(in the monadic sense) for the free monad generated by a polynomial functor. This is consistent with the
point of view that monads describe algebraic structure: in this case, its initial algebra is the syntactic model,
and we can think of inductive definitions in type theory as syntactic models of algebraic theories generated
by the type’s constructors.

Higher inductive types generalize inductive types by allowing us to add equations to the types we are
defining. That is, a specification of a higher inductive type gives not only constructors of the type itself,
but can also provide contructors for elements in the identity type of the type being defined. As described in
[14], a natural semantics of higher inductive types is to view them as initial algebras for non-free monads.
Given an internal description of general polynomial monads as we have been discussing, we expect to be
able to describe a semantics of higher inductive types inside type theory, similar to the way we can describe
ordinary inductive types internally using the theory of containers [1]. A more thorough understanding of the
semantics of higher inductive types could have very real consequences for the design of the next generation
of proof-assistants, which one would hope could support such definitions natively.

Goal 7 Develop an internal semantics of higher inductive types using the theory of polynomial monads.

2.2 Synthetic Homotopy Theory

While the previous section dealt with understanding how to define and manipulate structures in the presence
of higher equalities, studying the properties of higher equalities themselves is also important for a deep
understanding of dependent type theories. Moreover, as we have argued, the properties of higher equalities
are already quite well studied in the branch of mathematics known as homotopy theory. Hence we can regard
the project of synthetic homotopy theory as an exercise in probing the properties of proof-relevant equality.
Here we outline various projects connected with this goal.

2.2.1 Loop Spaces

A classic question in homotopy theory is the following: when is a space X homotopy equivalent to the space
of loops on some other space Y ? This question has a direct translation in type theory:

Problem 1 Find conditions on a type X sufficient to construct a type Y and an element y : Y such that

X ' IdY y y

In other words, the type theoretic question asks: when is a type equivalent to an identity type?
This question has a well known answer in topology: the key observation is that if X is equivalent to a loop

space, then it must admit a multiplication operation µ : X×X → X. This is because loops can be composed
(and type theoretically, because equality is transitive). Moreover, as we always have a constant loop, and
since loops can be inverted, this multiplication should make X into a group up to homotopy. The delicate
question, then, is to make sense of what one means by “group up to homotopy”. The traditional answer to
this question passes by the theory of operads (in fact, operads were invented to answer this question.).

As we have pointed out, the theory of (∞, 1)-operads is a special case of the theory of polynomial monads.
And in fact, the operad which describes associative multiplicative structures, known as the A∞-operad, turns
out to be relatively easy to construct (in computer science terms, it is exactly the List monad). An algebra
over this monad is a type with an infinitely coherent associative multiplication. One says the algebra is
group like if, in addition, all its elements are invertible under multiplication. This motivates the following
type-theoretic translation of the classical theorem from topology:

Conjecture 3 The type of group-like A∞-algebras is equivalent to the type of pointed, connected types.

11



It is important to note that, if we use the naive translation of the notion of a group, specifying only the
associativity axiom, but leaving out the higher axioms, then this theorem is false. This is another example of
the difference between the naive notions of structure we obtain by analogy with set theory, and the coherent
structures which are correctly behaved in a proof relevant setting.

2.2.2 Iterated Loop Spaces

The question of the previous section has a natural generalization: given a type X, we can ask under what
conditions we can construct a sequence (Y1, y1), (Y2, y2), . . . , (Yn, yn) of pointed types such thatX ' IdY1 y1 y1
and for each i we have Yi ' IdYi+1 yi+1 yi+1. In other words, when is X and n-fold identity type?

This question also has an answer in topology: it is related to the commutativity of the multiplication of
the previous section. Here, one meets a well studied phenemenon in homotopy theory, which has a direct
analog in type theory: unlike in set theory, in the presence of a proof relevant equality, there is an infinite
tower of progressively stronger “notions of commutativity” which interpolate between merely associative
(i.e., not at all commutative) and being infinitely commutative which corresponds to the notion we known
in set theory.

This tower of increasingly commutative structures is controlled by a sequence of operads known as the
En-operads. That is there is a sequence

A∞ = E1, E2, E3, . . . , E∞

of operads beginning with the A∞ operad of the previous section. Moreover, the answer to the question of
when a space is an n-fold loop space is exactly that it admits the structure of a group-like En-algebra.

The construction of the E∞ operad turns out to be quite straightforward. (In fact, it can be seen as
the sub-operad of the terminal opeard, i.e. Type, consisting of those types where are merely equivalent to a
finite set). The construction of the En operads for 1 < n < ∞ is considerably more difficult. A definition
by induction is given by the relation En+1 = E1 ⊗ En where ⊗ is the Boardmann-Vogt tensor product of
operads.

Goal 8 Define the Bordmann-Vogt tensor product, thus giving a construction of the En-operads. Show that
a type is an n-fold identity type if and only if it is a group-like algebra over the operad En.

We hasten to point out that, while the proof of the above theorems will undoubtly rely on the univalence
axiom, the phenomenon that there exists a sequence of increasingly subtle notions of commutativity in the
presence of a proof relevant equality is completely independent of this axiom: it is simply a property of the
identity type IdX , whether or not we use the univalence axiom to attempt to characterize it. It is in this
sense that I feel topology can make contributions in computer science: without the intuition provided by the
univalent perspective, it is likely that this phenomenon would have continued to go unnoticed. But it is in
fact a fundamental property of equality in type theory. Indeed, the above theorem describes exactly what
structure higher identity types carry.

2.3 Type Theory and Higher Topos Theory

In parallel with the development of univalent type theory in the past decade, mathematicians have developed
a generalization of the notion of topos familiar from ordinary category theory. These two subjects are closely
linked, and it is widely believed that one can view type theory as the internal language of a higher topos.
Thus the simultaeous investigation of the theory of higher topoi is intimately related with out understanding
of type theory itself. In collaboration with Mathieu Anel, Georg Biedermann and André Joyal, we have been
investigating various questions in the theory of higher topoi, and our results have direct applications to type
theory.

12



2.3.1 Left Exact Modalities

In the classical theory of topoi, the notion of subtopos is controlled by a Lawvere-Tieney topology. In the
theory of higher topoi, that role is played by the notion of a left-exact modality in the sense of [15]. We
recently proved a generation result, showing how any dependent family P : X → Type can be used to
generate a left exact modality in type theory. This opens the door to a number of useful constructions,
making a formalization of this result desirable.

Goal 9 Formalize the generation of left exact modalities.

2.3.2 Goodwillie Calculus

The Goodwillie Calculus is an advanced technique and organizing principle in classical homotopy theory. It
seems that this theory plays an intergral role in understanding the structure of higher topoi. Moreover, it has
a direct and simple explanation in type theory in terms of modalities. A large portion of this theory can be
developed internally using our techniques for generating left-exact modalities combined with the Generalized
Blakers-Massey Theorem of [3]. In fact, the logical point of view on this subject appears nowhere else, and is
unknown to most topologists, meaning that this is a real opportunity for type theory to contribute original
theorems to mathematics.

Goal 10 Develop the type-theoretic perspective on Goodwillie Calculus.

2.3.3 Spectra and Linear Dependent Type Theory

In homotopy theory, the notion of a specturm plays a similar role to that of a chain complex in algebra, and
these objects turn out to be the natural home for (co)homology theories. Spectra have already been defined
in type theory and been used to construct spectral sequences, a method of calculating topological invariants
of types. In fact, most modern homotopy theory is concerned with the properties of spectra, as opposed to
spaces themselves, as these objects turn out to be considerably more tractable.

One consequence of the connection between the Goodwillie Calculus of the previous section and higher
topos theory is that the category of parameterized spectra is in fact itself a higher topos. This means that
we expect it to support a model of type theory, and we can ask what kind of extra principles it satisfies.
Our work on the Goodwillie calculus provides exactly such a description, and it is possible to write down
an extension of type theory which supports, in addition to the synthetic homotopy theory of ordinary type
theory, a version of synthetic stable homotopy theory which allows one to formally manipulate spectra and
their associated (co)homological invariants.

One way of interpreting spectra is that they are like linearized homotopy types, and indeed there is a
close connection with linear logic. In fact, it seems that the topos of parameterized spectra is probably
a natural semantic model for the notion of dependent linear type theory, and presents a real opportunity
for extending some of the ideas coming from univalent type theory to linear logic. As of today, there are
several proposals for this kind of type theory in the literature, and having this example in mind as a possible
semantics maybe a useful guide to investigating their properties.

Goal 11 Describe the type theory of parameterized spectra and make precise the link with linear logic.

2.4 Opetopes in Computer Science

Recall that the definition of polynomial monad discussed above is based on an adaptation of Baez and
Dolan’s plus construction for polynomial monads. As we have already pointed out, polynomial monads are
well known in computer science where they can be interpreted as type constructors or data types. Perhaps
the most familiar is the List monad (which, as we have mentioned, is the type theoretic incarnation of the
A∞-operad). The Baez-Dolan plus construction then has the following somewhat surprising consequence:
the List monad is first in an infinite sequence of polynomial monads generated by the plus construction. In
fact, the List monad itself is obtained by applying the plus construction to Ident, the identity monad.

13



The reason this sequence is perhaps not so-well known in the theory of functional programming is that
the remaining monads are all indexed in a non-trivial way, which is to say they are not endofunctors of
Type but rather endofunctors of the slice category I → Type for a specific type I. Hence the remaining
monads in the sequence only appear once we have dependent types. For example, applying the Baez-Dolan
plus construction to List gives the type constructor of planar trees, but regarded as a type constructor
Tree : (N → Type) → (N → Type). Applied to a type family X : N → Type, and natural number n : N, the
type TreeX n can be desribed as the type of planar trees with n leaves whose internal nodes are decorated
by X and subject to the constraint that a node with k descendants is decorated by an element of the type
X k.

In general, the type constructors obtained in this way can be regarded as higher dimensional trees. Baez
and Dolan gave them the name opetopes. Moreover, it turns out that there is a natural diagrammatic way
to represent these higher tree-like structures. And while a formal definition of these objects is somewhat
difficult (but follows from the definition of polynomial monad discussed above), their close connection to
inductive types makes them quite amenable to implementation in functional programming languages. I have
developed an extensive library of routines for manipulating these objects, and I feel that they deserve to be
more widely known in computer science.

2.4.1 Opetopic Proof Assistant

One of the interesting applications of the fact that opetopes admit a simple diagrammatic notation is that
one can use them to design a graphical proof assistant for a definition of higher categories based on opetopic
geometry. I developed a prototype implementation of such a system, called Orchard, in 2015. Since then, I
have attempted to redesign the project for the web. The result is currently online ([10]), but not yet returned
to a fully functional state.

Goal 12 Finish developing a higher categorical proof assistant based on opetopes.

2.4.2 Higher Grammars

A second application of opetopes in computer science is to the theory of formal languages. It has been
known for some time that there is a natural family of language classes interpolating between the context-free
languages and context-sensitive ones. The first family beyond the context-free languages in the hierarchy are
sometimes called mildly context-senesitive and are captured, for example, by tree adjoining grammars. The
linguist James Rogers showed that it is possible to capture this hierarchy using a notion of higher-dimensional
tree [16].

Using opetopic diagrams, we can in fact give a graphical notation for these higher dimensional grammars.
It has been a long standing goal of mine to develop this theory in more detail. For example, can one write
an algorithm, possibly generalizing the Earley or CYK algorithms, for parsing such higher dimensional
grammars? What are the complexities of such algorithms?

Goal 13 Develop a theory of higher dimensional grammars based on opetopes.

2.5 Laboratories of Insertion

Laboratoire des Sciences du Numérique à Nantes (LS2N) (UMR6004)
Laboratoire d’Informatique de l’Ecole Polytechnique (LIX) (UMR7161)
Institut de Recherche en Informatique Fondamentale (IRIF) (UMR8243)

References

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: constructing strictly positive types.
Theoretical Computer Science, 342(1):3–27, 2005.

14



[2] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types.
In ACM SIGPLAN Notices, volume 51, pages 18–29. ACM, 2016.

[3] M. Anel, G. Biedermann, E. Finster, and A. Joyal. A Generalized Blakers-Massey Theorem. https:

//arxiv.org/abs/1703.09050, March 2017.

[4] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-level type theory and applications. CoRR,
abs/1705.03307, 2017.

[5] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math. Proc.
Cambridge Philos. Soc., 146(1):45–55, 2009.

[6] John C Baez and James Dolan. Higher-dimensional algebra iii. n-categories and the algebra of opetopes.
Advances in Mathematics, 135(2):145–206, 1998.

[7] James Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer Science,
228:21–36, 2009.

[8] Eric Finster. Higher algebra in type theory. https://github.com/ericfinster/higher-alg.

[9] Eric Finster. Notes on a definition of higher structure. http://ericfinster.github.io/, 2018.

[10] Eric Finster. Opetopic. http://opetopic.net/, 2018.

[11] Eric Finster. Towards higher universal algebra in type theory. https://www.youtube.com/watch?v=

hlCVHVtAlqQ, 2018.

[12] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. In Mathematical
proceedings of the cambridge philosophical society, volume 154, pages 153–192. Cambridge University
Press, 2013.

[13] D. Gepner, R. Haugseng, and J. Kock. ∞-Operads as Analytic Monads. ArXiv e-prints, December
2017.

[14] Peter LeFanu Lumsdaine and Mike Shulman. Semantics of higher inductive types. arXiv preprint
arXiv:1705.07088, 2017.

[15] E. Rijke, M. Shulman, and B. Spitters. Modalities in Homotopy Type Theory. ArXiv e-prints, June
2017.

[16] James Rogers. Syntactic structures as multi-dimensional trees. Research on Language and Computation,
1(3-4):265–305, 2003.

[17] Mike Shulman. Homotopy type theory should eat itself. https://homotopytypetheory.org/2014/03/
03/hott-should-eat-itself/, 2014.

[18] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–84, 2015.

15

https://arxiv.org/abs/1703.09050
https://arxiv.org/abs/1703.09050
https://github.com/ericfinster/higher-alg
http://ericfinster.github.io/
http://opetopic.net/
https://www.youtube.com/watch?v=hlCVHVtAlqQ
https://www.youtube.com/watch?v=hlCVHVtAlqQ
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/

	Motivation
	Propositions as Types
	Structure and Equality
	Dependent Types
	Univalent Type Theory
	The Coherence Problem
	Summary

	Project
	Coherent Structures in Type Theory
	Polynomial Monads and Their Algebras
	The Groupoid Structure on Types
	Simplicial Types and Internal Kan Complexes
	(, 1)-Category Theory
	Internal Semantics of Type Theory
	Higher Inductive Types

	Synthetic Homotopy Theory
	Loop Spaces
	Iterated Loop Spaces

	Type Theory and Higher Topos Theory
	Left Exact Modalities
	Goodwillie Calculus
	Spectra and Linear Dependent Type Theory

	Opetopes in Computer Science
	Opetopic Proof Assistant
	Higher Grammars

	Laboratories of Insertion


